Machine Learning for Designers -Report

TI3150TU - Group 7

Designer wants to test new prototype

Sensor placed on hand of user gets movement data during user testing

Designer uploads received data to our notebook and tunes required parameters before running classification algorithm

Algorithm classifies data based on user actions. Using anomaly detection, the algorithm captures strange user behavior which the designer can then analyze further

Skip Doorn - 5356202 Alan Roukema - 5211883 Ian Tiemann - 5241200 Sophie Vlot - 5329922 Gijs Volkers - 5295920 Timo Zunderman - 5293707

Index

1. Introduction 1.1 Background and Project Description	3 3
2. Development Process	4
2 1 Data Collection	4
2.2 Importing GoPro Files	5
2.2.1 Extract the data from the MP4	5
2.2.2 Transform the data into usable data	5
2.3 Preprocessing	6
2.3.1 Windowing	6
2.3.2 Time domain	7
2.3.3 Frequency domain	7
2.4 Model Selection	9
2.5 Active Learning	10
2.6 Novelty Detection	12
2.7 PCA Visualization	13
2.8 Notebook and Instructions	14
2.9 Other Design Choices	14
3. Evaluation	16
3.1 User Testing	16
3.2 Requirements Validation	17
4. Final Thoughts	19
4.1 Reflection	19
4.1.1 Summary of logbook	19
4.1.2 Teamwork	19
4.2 Recommendations	20
Literature	21
Appendix A: Survey	23
Introductory questions	23
Loading data	24
Preprocessing	24
Get output	25
Final thoughts	25
Appendix B: Survey Notes	27
Evaluation 1	27
Evaluation 2	29
Evaluation 3	29
Evaluation 4	29
Evaluation 5	29
Evaluation 6	30
Evaluation 7	30

	TI3150TU Group 7
Evaluation 8	30
Evaluation 9	30
Appendix C: Survey results	31
Evaluation 1	31
Evaluation 2	35
Evaluation 3	39
Evaluation 4	43
Evaluation 5	47
Evaluation 6	51
Evaluation 7	55
Evaluation 8	59
Evaluation 9	63
Appendix D: Performance graphs	67
Appendix E: Active Learning code	69
Appendix F: Requirements (MoSCoW)	71
Appendix G: Ethical reflections	72
Ethical Reflection 1	72
Ethical Reflection 2	72
Ethical Reflection 3	73
Appendix H: Novelty detection code	75
Appendix I: PCA code	76
Appendix J: Consent forms - User tests	77
Appendix K: Validation approach	91
Appendix L: Logbook	93
Appendix M: JavaScript code	102

1. Introduction

This document is a means to follow the developing process from start to finish. All information about the project that is not included in the actual product (Notebook and <u>website</u>) can be found here. For weekly planning, meeting notes, and completed items, please refer to the <u>Notion workspace</u>.

1.1 Background and Project Description

Data-driven design offers new ways of using data to create products, services and experiences that are better at meeting users' needs. Technology is currently in a state where using cheap sensors to generate information about the product, and its usage can already significantly impact the user experience of such products in a positive way (Jagtap & Duong, 2019). Data collected by sensors from prototypes or even finished products are a treasure trove of information. However, sensors generate many data, and when looking at multiple sensors across multiple products, it can be hard to get any helpful information. Even if the Designer can deduct surface-level patterns, the deeper levels will always be hidden from a person analysing at this scale. Machine learning techniques can help create insights that are not visible by looking at the raw data. Moreover, machine learning can make this data insightful by visualising an overview. The information gathered from this can be used to develop the product further, adapting it to how it is utilised in real life.

With the knowledge of basic machine learning concepts, we are asked to work on a project based on these insights. This project is led by the clients/supervisors Jacky Bourgeois, Dave Murray-Rust and Kostas Tsiakas, with the support of Teaching Assistant Matej Havelka.

The use of data to improve products, services and experiences is not a new concept in the design world. Nowadays, a couple of high-quality sensors are relatively cheap and easy to purchase. However, hidden in raw data is valuable information that is hard to extract by hand. The goal is to make this more accessible and less time-consuming for a designer without in-depth knowledge of these techniques with the use of AI. This project uses a combination of AI techniques like active learning, dimensionality reduction and novelty detection to analyse the data and generate useful information for the Designer in a fraction of the time it would take by traditional means. The Designer gets the relevant types of information - statistics about how the product is being used and unexpected behaviour.

2. Development Process

In this chapter, a complete overview of all the technicalities behind the code, as well as design choices, can be found.

2.1 Data Collection

To collect data, sensors were used, while activities were executed in different contexts. These generated datasets can be used to write and test the written code. The data collection process will be described here, as well as the different contexts in which the data was collected.

The first context is walking. The activities included walking up/down the stairs, running, and walking normally. In the beginning, the data was collected via mobile phones since all modern mobile phones have an accelerometer and a gyroscope, and a user could also use this, It wanted to collect real-life data, so it was collected in the centre of Delft, where the data was collected by walking through the city centre and climbing the Nieuwe Kerk. A total of five people climbed the Nieuwe Kerk, one person recorded data while walking through the city centre, and one person recorded data while running. Recording data with multiple persons results in a more robust model since everyone walks in a slightly different way. During collecting the data, it was made sure that everyone used the same app to collect the data and that the phone was held in the same position and was titled in the same way by everyone. If this was not done correctly, the model could not recognise that the same action was executed because the values of all the sensors would be significantly different. After this first data collection session, it became clear that the app only recorded about twenty-second clips. This app flaw resulted in the decision to use a GoPro from now on to record the data. Using a GoPro has two advantages: there is no limitation on the recording length, as long as the video file fits on the sd-card inside the GoPro and a video is made simultaneously. As explained in a later part of this report, the video will be used by the user to train the model. The way the GoPro was used and how the data was extracted from the video file can be found later in this chapter.

The second context in which data was collected was vacuum cleaning. Again the sensor placement was discussed, and it was made sure that the GoPro was placed in the same way each time. In total, three different people vacuum-cleaned their room or house while recording a video with the GoPro. At this point, it was possible to extract the accelerometer and gyroscope data from the video file. During the last stage of testing the product, it was decided to record two new datasets. It was wanted to test if the model could also work in yet another context, namely product-based activities. The data was collected while holding a mug, which the actions consisted of being still, walking while holding the mug, picking it up, putting it down, and drinking from it. After testing this data, it was concluded that the model also could be used for prototypes where there are instances of no activity, as long as they are marked as an activity. The second dataset that was collected in this last stage was cycling. This was done to determine the different activities on various textures of the ground. The different activities revolving around cycling were standing still, staying at a constant speed, accelerating and slowing down. The different types of ground consisted of asphalt,

clinker bricks and concrete clinkers. Figure 2.1 shows the respective types of roads. All datasets are submitted along with this document.

Figure 2.1: Asphalt, clinker bricks, concrete clinkers

2.2 Importing GoPro Files

To make the sensor data ready for preprocessing in the Notebook, there are some steps to be taken. They will be explained in this chapter.

2.2.1 Extract the data from the MP4

A GitHub repository was found that could extract the GoPro telemetry data from the video file into a .json file (JuanIrache, 2022). Another source explained how it was possible to use the extraction tool to get the JSON file (G., 2022) containing the telemetry data. The code can be found in the repository under GoPro in the file '*GoPro_Telemetry_Code*". In this code, the GoPro video can be given as input, after which it saves the JSON file. If the explanation of G. is followed, it is possible to get the same code as was used. The code is in <u>Appendix M</u>, but it might be necessary to download the necessary packages as explained by G. Unfortunately, there was not enough time to explain how the installation should be executed extensively. We found this was a little outside the scope of the goal of this project. It is expected that designers probably will find this a little too hard to use, but with some work, this process could be improved in the next iteration of this project.

2.2.2 Transform the data into usable data

The JSON file generated in the extraction step was not usable for the algorithm since the preprocessing expects a certain format. In order for the program to work, it is necessary to transform the data streams ("GYRO" and "ACCL") into two separate CSV files, including the timestamps at which the data was sampled. A small Python script called "*jsontocsv.py*" can be found under the GoPro tab in the repository, that does exactly this. It reads the JSON file and extracts the data streams that are needed into separate files. First, the file path of the JSON file needs to be entered together with the sensors that are wanted to be written to the CSV file. The script then saves the desired datastream as a CSV file that can be used by the next part of the algorithm, the preprocessing part.

{"1":{"streams":{"ACCL":{"samples":[{"value":[9.437799043062201,0.17942583732057416,3.36363636363636363638],"cts":0, "date":"2023-01-16T10:53:45.0002","sticky":{"temperature [°C]":25}},{"value":[9.490430622009569,0.1818181818181818182,3. 351674641148325],"cts":5.128205128205129,"date":"2023-01-16T10:53:45.005Z"},{"value":[9.421052631578947,0. 20574162679425836,3.3157894736842106],"cts":10.256410256410257,"date":"2023-01-16T10:53:45.010Z"},{"value":[9.

Figure 2.2: extracted JSON File.

1	L	0.0,9.437799043062201,0.17942583732057416,3.363636363636363638
2	2	0.005,9.490430622009569,0.18181818181818182,3.351674641148325
З	3	0.01,9.421052631578947,0.20574162679425836,3.3157894736842106
4	1	0.015,9.411483253588516,0.19138755980861244,3.327751196172249
5	5	0.02,9.411483253588516,0.1937799043062201,3.3660287081339715
6	5	0.025,9.385167464114833,0.23444976076555024,3.382775119617225

Figure 2.3: "ACCL" (accelerometer) datastream in a CSV file.

2.3 Preprocessing

After the data collection, the data needs to be preprocessed in such a way that it is usable for the machine learning model. The raw data that was collected is not suitable for these models because it is both not in the right format, and there has not been any feature extraction.

The format is important because Python needs to be able to work with the data in a way that is always similar, regardless of the original. But more important is the feature extraction. This is a process in which values are derived from the raw data. An example could be taking the average from a set of numbers. This will make sure the model has enough relevant data, which improves accuracy and reliability, reduces overfitting and speeds up training. The process of preprocessing that is used during this project is described below.

2.3.1 Windowing

First, the data is windowed, i.e., taking a small part of the data from which the features are extracted. To have as many windows as possible, sliding windows were used, which means that the different windows overlap to make sure activities are caught, even if they don't fit one of the windows. As can be seen in Figure 2.4, window W2 overlaps partially with W1 and W3. After processing a window, the window is shifted some amount of time in the future, and the features are extracted until the end of the full data stream is processed. In the figure, the window size is two seconds and the slide time, or offset, is one second. By using a sliding window, each window will be classified with regard to what is being done in that particular window.

Sliding windows (2 second window, 1 second slide)

For example, when an activity is happening between one and three seconds, windows W1 and W3 would not be able to correctly classify this activity with high certainty. W2, however, can because it sees the whole action.

2.3.2 Time domain

After a window is made and the data that is in that particular window is collected from the files containing the sensor data, the features are extracted. In total, five features from the time domain and three features from the frequency domain are extracted. The time domain is the graph that can be obtained when the sensor data is plotted. It visualises the amplitude (y-axis) set out against the time (x-axis). An example of a graph is shown in Figure 2.5, where a phone moved while recording the accelerometer data.

Figure 2.5: Graph of accelerometer data in the time domain.

The features per axis of each sensor that are extracted in the time domain are represented in Table 2.1.

Feature	Explanation
Minimum	The lowest value in the window
Maximum	The highest value in the window
Average	Average of the values in the window
Standard deviation	Standard deviation of the values in the window
Area under the curve	Area that is between the curve and the x-axis

Table 2.1: Features in the time domain and their explanation.

2.3.3 Frequency domain

The frequency domain is more complicated. Each signal can be expressed as a sum of sines and cosines with different frequency components. These individual frequency components and their amplitude can be found by the use of a Fourier transform. The process of calculating the components will not be explained in this report, but it is a well-known method that is used to extract wifi signals, for isolating audio and improve the quality of images for example. In this preprocessing step, it is used to extract additional features that are hidden in the time domain.

Figure 2.6: Visual representation of time and frequency domain and their relation to each other (Fourier transformer)

After the Fourier transformation, the contribution of the different frequencies that are part of the time domain can be seen. This data can give the most important frequency, which could be different for some or every activity. Figure 2.7 is an example that was extracted from data collected for this project. The extracted features can be found in Table 2.

Table 2.2: Features in	the frequency	domain and	their explanation

Feature	Explanation
Centroid frequency	The frequency where the energy of the frequencies to the left is equal to the energy of the frequencies to the right, excluding 0Hz
Maximum energy	The maximum energy, excluding 0Hz
Peak value frequency	The frequency with the highest amplitude, excluding 0Hz

After having extracted all these features from the X, Y and Z axis of both the accelerometer and gyroscope, there are 48 extracted features (8 basic features * 3 axes * 2 sensors).

After extracting features from every window in the time and frequency domain, preprocessing is done, and model training can start. In the design process, the appropriate machine learning model needed to be selected first.

2.4 Model Selection

A model needed to be selected which the product was going to use to classify the sensor data. All the models come from the scikit-learn package. To come to a decision, a selection of models was trained and evaluated on previously collected data. The selection of these models was based on research papers that showcased which models are useful when working with accelerometer data. From different papers, the random forest seemed to be the most promising (Nurwulan & Selamaj, 2020) (Lavanya Devi & Viziananda Row, 2017). The tables below show the models that were used and their respective accuracies, together with the time it took to train the model. The models were tested on two different already preprocessed datasets, the walking dataset and the dataset from the mug. The results of the first dataset are shown in Table 2.3 and the second in Table 2.4.

Because k-means learns in an unsupervised way, it does not have a train or test accuracy. The test accuracy is calculated by using a test set and by hand comparing every possible combination of clusters and picking the best-case scenario. So for 3 categories and clustering unsupervised, there are (3 * 2 * 1 =) 6 possible combinations.

Model	Train accuracy	Test accuracy	Time (s)
K-neighbors	0.89	0.80	0.12
SVC	0.85	0.90	0.25
SGD	0.72	0.74	0.01
Decision tree	1.0	0.97	0.01
Bagged classifier (using 100 decision trees)	1.0	0.98	0.76
Random Forest	1.0	0.98	0.24
K-means	N/A	0.81	0.10

Table 2.3: Accuracies for dataset 1 - Walking

Table 2.4: Accuracies for dataset 2 - Using a mug

Model	Train accuracy	Test accuracy	Time (s)
K-neighbors	0.98	0.94	0.15
SVC	0.97	0.93	0.26
SGD	0.96	0.91	0.02
Decision tree	1.0	0.93	6.46

			Group 7
Bagged classifier (using 100 decision trees)	0.97	0.93	4.59
Random Forest	1.0	0.96	0.47
K-means	N/A	0.45	0.21

From these tables, it can be concluded that the random forest model is the best option for both use cases. The first reason for this is the high accuracy on the datasets, namely 1.0 on the training set for both the datasets and 0.98 and 0.95 on the test sets. The second reason is the time it takes for the model to run. Even though the bagged classifier has about the same accuracy as the random forest, it takes significantly longer for it to be run compared to the random forest model. As active learning will be used (which is explained later on), the entire model will need to be re-trained multiple times. If training takes a lot of time, this process will take too long to be viable.

The decision tree classifier also performed quite well on the trained and tested data, and the time it took was also very fast. However, this model wasn't used because it could potentially perform worse in data that is not easily separable by linear decision boundaries. The random forest model will create a more smooth transition between the two classifications. If data is provided that is more intertwined, the random forest can potentially separate these activities better. The results will also be more stable due to the use of many decision trees (Talari, 2022).

2.5 Active Learning

Active learning was used to train models. This is useful for decreasing completion time because the Designer will only be asked to label a minimal amount of data points. Finding a way to decrease time spent on labelling data is extremely useful in this case because recording just minutes of sensor data already generates thousands of data points. The first stage consists of selecting starting points and labelling them. After that, an algorithm is put in place to select just the least certain unlabelled points, which the Designer will then have to label. This is the second stage. This way, the dataset just has to be corrected when it is not sure, and all other data points are automatically labelled. This can save a lot of time for the Designer, labelling every point by hand the traditional way. These self-labelled points are added to the training data, and the model re-trains on this data once for every iteration.

To select the starting points, a combination of functions was used. One function randomly selects starting points, and another uses an algorithm to find certain data points (Appendix \underline{E}). The algorithm that was used is k-means clustering. If a point lies exactly on its cluster centre, the certainty that it belongs to that specific cluster is the highest. The further it lies from the centre, the more chance that it could actually belong to another cluster (and k-means made a wrong prediction). To minimise iterations, the active learning pipeline should start training on the most certain points. This information was used to detect them and combined with the other function. Each activity got selected to be a part of the initial training data in the next part, where a model is trained on the pool of labelled training data.

TI3150TU

After the first iteration, a function is used that computes the least certain unlabeled sample from the training pool. This function can be found in figure E.1, and it works by computing a margin. The margin is the difference between the probability of the predicted class and the highest probability of another class being the correct prediction. If there's a list that looks like this: [0.50, 0.49, ...], it means that the certainty of the sample being the predicted class is 50%, and the certainty of the label being another class is 49%. This needs to be avoided as much as possible, so this list gets computed for every unlabelled sample, and the sample with the smallest margin gets added to the training data. The Designer is asked to label this point, and in turn, it gets added to the labelled training pool, and the model re-trains again. As a result, the model will make increasingly better predictions for unlabeled points. In Appendix D, there are graphs that show how metrics like test accuracy and the Gini index improve increasingly.

As for the approach for testing and checking for overfitting, a combination of different evaluation metrics was used. As random forest classification was used, the Gini index is a measure of the purity of splits. As seen in <u>Appendix D</u>, the Gini index approaches zero more after each iteration. This means that splits get purer, but overfitting has to be avoided. This is why the decision was made to label the entire dataset and set aside some test data to compute test accuracy. The test accuracy shows that there's no case of overfitting. Lastly, the ambiguity was computed using the margin. In the actual iterations, it gets computed for every sample, and the samples with the smallest margin were added to the training data. The margin included in the graph is the lowest margin found over all samples. This is because the aim is to have a list that looks like this: [1.0, 0.0, 0.0, ...], the lowest margin is a kind of 'worst case', and the lowest margin is ideally as high as possible.

In order to get a better idea of the accuracy of the active learning model, data was collected for a second use case: a GoPro was tied to a mug, as explained before. Five labels were chosen, namely: the mug is staying in the same place, the mug is being picked up, the mug is being put down, somebody is drinking from the mug, or somebody is walking with the mug in one of his hands. In total, 3 minutes and 11 seconds were recorded, resulting in 82 actions, where each action was one of the five predefined labels. Labelling these 82 actions by hand took approximately an hour while labelling about 125 samples of 0.7 seconds only took about 5-10 minutes. It is important to note, though, that during the user testing, it became clear that designers take a little bit longer to label these samples because they had never done it before. Even though it might take longer for an inexperienced user, it still took no more than 20 minutes, much less than the hour it took to label all the data by hand.

Logically, the decrease in time also results in a decrease in accuracy. Letting the model predict each window resulted in an error rate of 102/1058 or 9.641%. 52.57% of the time, the mug was standing still on the table. This was our dummy classifier (always predict 'still', with an accuracy of 52.57%) and thus the score to beat. Analysing the wrongly labelled samples, it became clear that the samples that are wrongly classified mostly are the labels where there is a transition from one first label to another label. Those samples are often difficult to label (for labelling them via active learning as well as labelling them by hand) since those samples are regularly a combination of two actions. This means that if the actions take longer, the accuracy will go up.

In conclusion, even though the model made from active learning was less accurate than labelling the data by hand, it was accurate enough to get an idea of what happened during the recording. This can be seen in Figure 2.8. Each line corresponds to a window, with the colour representing one of the labels. In the figure, it can be seen that most times, the mug first stands still, then gets picked up, somebody drinks from the mug or walks with the mug, the mug is put down, and it stands still again.

Figure 2.8: Time distribution graph

In order to improve the accuracy, multiple measures could be taken. The easiest solution would be that more samples are labelled since this would only require re-training the model. Other possible more rigorous measurements could be, choosing different, more distinct labels or recording more data.

2.6 Novelty Detection

LocalOutlierFactor from *Scikit-learn* was used to investigate the possibility of novelties after training and to evaluate the models' performance. The novelty detection displays the points that are the most different from the rest of the data. 10% of the data that is the most different is displayed by default. This data is displayed by showing the video of that data point to the Designer. With these videos, the Designer can see if there is any unexpected behaviour, which they can analyse by watching the videos. The file name and timestamp will be printed so the Designer can take a look at the video themselves. The code used for novelty detection can be found in <u>Appendix H</u>.

Figure 2.9: An example of the novelty detection media player

2.7 PCA Visualization

PCA was used as a dimensionality reduction method to compress 48 dimensions into 2. This is to visualise the dataset in a plot. The dataset is plotted during active learning to visualise the point being classified and to see if any clusters are forming with regard to the different labels. This will give the Designer some information about the dataset in general, what they have already classified and the current point. However, the PCA cannot be used to draw any conclusions because the axes don't have meaning. Consult <u>Appendix I</u> for the code for PCA and the plotting.

Figure 2.10: PCA analysis graph showing the points that are labeled

Figure 2.10 shows the points that are labelled and the current point that is waiting to be labelled. This graph is shown in the Notebook after about 25 points (depending on the settings and the number of labels) are labelled by the user and are updated in real-time during active learning. This way, the user can get insights into potential clusters.

2.8 Notebook and Instructions

The choice was made to make a Jupyter Notebook (from now on abbreviated to Notebook) that the Designer can use to execute the written Python functions. A Notebook is relatively easy to use since text and images can easily be added around blocks of code that can be executed. In this way, it can be briefly explained what the user should do without having to go back to another document for instructions. Another option was to make a graphical user interface in Python. This would require much more time since it was needed to learn how to do this. For the instructions, the decision was made to keep the text in the Notebook as minimal as possible. Just the essential step-by-step instructions were put in the Notebook. Other important instructions, like a word list and introduction, would be found elsewhere. This way, the Notebook is as uncomplicated as possible. The instructions that are specific to one code block are included in the Notebook. After testing this workflow, the most efficient distribution of instructions was found, where the Designer would have to switch the least possible amount between the Notebook and other instructions.

This decision was made because complete instructions combined with code blocks would simply be too overwhelming for designers without any coding experience. Scrolling back to consult previous instructions is also limited this way. After having written all the instructions, the information was kind of scattered across files. All the instructions that were not included in the guide had to be put in one centralised location. At the advice of the client, GitHub pages were used to create a <u>website</u>. This way, the Designer can keep this website open in a separate tab and can easily consult it at any time they feel the need. Pages were also linked inside the text to make for easier navigation through the website.

2.9 Other Design Choices

To ensure that the Designer understands what steps will need to be taken in the Notebook, a flowchart showcasing all the various steps is added at the beginning (Figure 2.11). Adding to this, an arrow shows where the Designer is currently in the process. This way, the users can get a better overview of the Notebook. These design choices were made after multiple surveys suggested that some more visual cues instead of just text could make everything a bit more clear.

Figure 2.11: Flowchart of steps in Notebook. The current step is 'setup.'

At the beginning of the project a brainstorm was conducted to decide on what type of visuals would be interesting for the designer, one of which was a bar chart that shows the amount of incorrectly and correctly labelled datapoints per label. However, the code was written before there was decided to use active learning, rendering the bar chart useless as there are no correct labels to compare the predicted labels with. It could have been implemented in active learning but time constraints caused it not to be a priority. This visual, however, can be a useful for a designer. In further improvement on this project this chart may be a useful addition. The bar chart visual showing predictions of collected data can be viewed below. As can be seen all data is correctly labelled.

Figure 2.12: Bar chart of label predictions

3. Evaluation

In this chapter, the evaluation of our product through user testing and requirements validation will be described.

3.1 User Testing

The evaluation should be designed in such a way that test subjects are able to complete it in a reasonable amount of time, which is why a given dataset was presented instead of having the focus group collect data during the evaluation. Deciding to have test subjects answer the questions in a setting like this will help actually make observations as well. Watching actual designers use the product will give more useful information, as opposed to just analysing the survey answers after completion. Another advantage of this approach is that expectations can be set and evaluated in a systematic way by defining them beforehand. This gives another measure of how the product is received by designers. For example, the duration of the evaluation (completion time) can be compared to how long it should reasonably take, assuming the product provides comprehensible instructions.

The user evaluation was carried out in an iterative way. Two surveys were taken off very extensively, one-on-one. All observations were written down, and the instructions were adjusted accordingly after this first stage. The second evaluation happened after the guide was improved based on the feedback from the first evaluation. 9 designers tested the product while notes were taken about their process. To document the observations, some preliminary expectations and metrics were created, and any errors or questions during the process were written down. As for the scale, it was decided to stay consistent with a 1-5 Likert scale on each question (Kaptein, 2010). Because questions about experience are very subjective, it's important to create a way to get the least ambiguous answers while still getting nuanced replies. A 5-point scale was chosen for user-friendliness and because it includes a midpoint for neutral attitudes. In this case, a 5-point scale is more user-friendly because it avoids designers getting stuck on a question because they can't decide on an answer. This would have a significant influence on reliability because this evaluation will already take quite long to complete. Getting a wide variety of numeric results is also less important, as notes were taken during the evaluation as well.

The full survey results can be found in <u>Appendix C</u>. Table 3.1 shows some metrics about the numeric questions from the evaluation survey. The cells that are highlighted grey show the results of questions about ability and difficulty (where 5 is the easiest, and they are well able to execute the tasks), while the unmarked cells represent questions about the subjects' understanding (where 1 represents no understanding at all). The latter is included to investigate if there's any correlation between understanding and how difficult a subject found a step. From these results, it becomes clear that this is not the case. This means that it can be stated that the instructions make for better usability, regardless of experience. Question 4.2 is about the general difficulty of using the product, and the average score is equal to 4.27. The numeric survey results are positive, even for designers that don't understand machine learning at all.

	<u>Mean score</u>	<u>Minimum</u>	<u>Maximum</u>	<u>Modal value</u>
Loading data				
1.2	4.17	2.5	5	5
Preprocessing				
2.2	4.27	2.5	5	5
2.3	2.61	1	5	2
Getting output				
3.3	4.56	3	5	5
3.4	2.61	1	5	2
Final thoughts				
4.2	4.27	3	5	5
4.3	3.05	2	5	2

The expected completion time was 30 minutes, while most evaluations took around an hour. The most occurring feedback was that the main goal of the program and the steps were not really clear. Also, it was unclear how you could edit paths in the file. Moreover, there was some misunderstanding about if something had run and how long cells would take to complete. For instance, it was unclear how many videos they had to label and how far they were in the process. The general expectations were very low, and most designers had no idea what the process would look like before reading through the website. Some designers thought they had to code something themselves. After completion, subjects found using the application surprisingly easy. The general consensus was that it was easy to follow the steps and that they didn't need to know anything about the inner workings. There were some modifications made after the feedback. A background page was added to the website to make for a better understanding of the main goal. Another functionality was added to the Notebook to display the samples that still had to be labelled. The code blocks were improved on readability. Lastly, the instructions were improved based on all the questions raised by the test subjects. The biggest risk of this product is the user not being able to use it, and this is minimised as much as possible by doing this. The risk of the user not reading the text well is not something that is preventable.

3.2 Requirements Validation

The table below is an overview of how the requirements were validated and what changes were made to the validation approaches. The requirements can be found in <u>Appendix F</u>.

Requirement	Evaluation	√/X
M.1	Implemented gyroscope data in week 7 due to setting priorities. No unforeseen circumstances occurred after implementing this functionality, so	~

Table 3.2: Requirement evaluation table

	no further changes	
M.2	No changes, finished data collection and processing sooner than expected	\checkmark
М.3	No changes, finished before the agreed deadline. The model could already distinguish 3-4 activities by week 6, namely walking, running, walking up the stairs (and walking down the stairs)	~
M.4	No changes, validation can be found under <i>Testing models</i>	\checkmark
M.5	No changes, justification under Model selection	√
M.6	No changes, our dummy classifier accuracy for the mok was 52% and our model accuracy was 91%, so our model outperformed the dummy classifier	~
M.7	No changes, design choices can be found under Notebook and Instructions	\checkmark
S.1	No changes, annotations are present	~
S.2	No changes, explanation under PCA Visualization	~
S.3	By week 7, we had realised that linking a report grade to user experience might not make as much sense as we had initially thought. After discussing this with the client, we decided to change the metric for S.3 to observations, combined with a (statistical) overview of the most informative results (<u>Appendix C</u>)	✓
S.4	We tested one model architecture, and it worked for the initial two contexts (<i>Testing models</i>). To expand upon this, we collected more data from a different context (<i>Data Collection</i>) and tested it	✓
C.1	We haven't implemented anything to accommodate uploading or downloading data from the IoT-cloud. This was beyond the scope of our project.	Х
C.2	Because of time constraints but also due to some lacking knowledge we couldn't implement self-learning techniques.	Х
C.3	No changes, explanation under Novelty Detection	\checkmark

4. Final Thoughts

4.1 Reflection

4.1.1 Summary of logbook

In <u>Appendix L</u>, there is detailed documentation of our weekly progress - a summary will follow in this section. By week 4, we had already finished the preprocessing steps of the process. This involved the steps needed to upload and preprocess the accelerometer data gathered during data collection, which all happened in the same week, week 3. Since we had already finished building and testing our active learning model, we'd finished M.3 ahead of schedule. At this point, our model was already able to distinguish between at least 3 different given activities based on the data we collected in week 3. We decided our model would show the timestamp of an activity, and before Christmas break, we could present the Designer a GIF of the activity at that timestamp. At this point, our model was consistently able to get close to 95-100% accuracy on the training, as well as test data we gathered ourselves.

4.1.2 Teamwork

In this section, we will summarise how the development of our product has progressed over the past weeks. The first four weeks ran smoothly; we were consistently ahead of schedule. Aside from having to finish preprocessing instead of starting to select models first, we were able to stick to our planning and even did some extra work. Unfortunately, every team member got the flu one by one right before Christmas break. We were, however, able to check off every item on our to-do list due to the fact that we had been working ahead of schedule for weeks. Luckily, we experienced no delay and could continue fresh and healthy after the break. Although we still had a fair amount of work to finish for the report and guide, we were confident we would finish in time by continuing to work how we did in the first couple of weeks. We did run a little bit behind on finishing the code because we hadn't taken into account the fact that user tests would invoke more changes to the Notebook. The user testing was changed to be an iterative process, but this led to having to process survey results at the last moment. Combined with creating the website, this was guite a lot more work than our planning indicated. Our team was well capable of dividing work among team members efficiently, and by working in dynamic pairs, we made sure everyone was kept up to date about every part of the project. We used Git to share code, Visual Studio Code to code everything and see each other's work, Liveshare to collaborate, and distributed the work during our team meetings. While some team members spent time on the code, others documented, made reflections or collected data. The team worked great together without any arguments. We also did some team bonding activities to strengthen our overall relationship with each other. The only instance of 'conflict' we ever experienced was (very) minor disagreement about our vision for the project. Suffice it to say we can all be proud of the efforts we took as a team to get to the final product we delivered here.

4.2 Recommendations

The product was created to be easily adaptable and act as a framework for further expansion. The *won'ts* and *coulds* that were scoped out are the first things that come to mind as recommendations for further research. This product could be integrated with the IoT cloud, which would allow designers to gather data more easily. The user interface could also be designed to be more user-friendly, for example, by using an API. This way, designers without coding experience won't have to learn how to open and use Notebooks. From the user tests, it became clear that it would be useful to add a page with common errors and how to solve them or even add a support functionality where users can directly contact developers. Another addition to the user evaluations would be creating another Notebook without instructions and taking surveys to investigate the effect of adding instructions.

As the output is completely interchangeable, any desired information about the processed data can be requested by writing another function. For this reason, a recommendation could be to analyse what type of information may be useful to a designer to personalise our product further for a designer's use case. This recommendation is ethically relevant. It's about adding functionalities to increase the inclusivity of the product and is explained in more detail in our third ethical reflection (<u>Appendix G</u>). Designers should be aware of the ethics revolving around data collection - consent, representability, and privacy need to be taken into account. In general, ethics should always be considered when working with data like this. Within future projects on which this product is built, any new features should, therefore, always be implemented with ethics in mind.

Literature

- Andreas Bulling, Ulf Blanke, and Bernt Schiele. 2014. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 46, 3, Article 33 (January 2014), 33 pages. <u>https://doi.org/10.1145/2499621</u>
- Bogers, S., Frens, J., van Kollenburg, J., Deckers, E., & Hummels, C. (2016). Connected baby bottle: A design case study towards a framework for data-enabled design. In Proceedings of the 2016 DIS Conference on Designing Interactive Systems (pp. 301-311). New York, NY: ACM. https://doi.org/10.1145/2901790.2901855
- G., David. (2022, April 1). Getting started with GoPro Telemetry to parse GPMD. Trek View. Retrieved January 23, 2023, from <u>https://www.trekview.org/blog/2022/gopro-telemetry-exporter-getting-started/</u>
- Gorkovenko, K., Burnett, D. J., Thorp, J. K., Richards, D. & Murray-Rust, D. (2020). Exploring The Future of Data-Driven Product Design. *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*. https://doi.org/10.1145/3313831.3376560
- Gorkovenko, K., Burnett, D., Thorp, J., Richards, D., & Murray-Rust, D. (2019). Supporting Real-Time Contextual Inquiry Through Sensor Data.
- Gorkovenko, K., Burnett, D.J., Thorp, J.K., Richards, D., Murray-Rust, D. (2020). Exploring the future of data-driven product design. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (1-14). New York, NY: ACM.
- Gupta, N., Gupta, S. K., Pathak, R. K., Jain, V., Rashidi, P., & Suri, J. S. (2022). Human activity recognition in artificial intelligence framework: a narrative review. *Artificial Intelligence Review*, 55(6), 4755–4808. <u>https://doi.org/10.1007/s10462-021-10116-x</u>
- Gupta, S. (2021). Deep learning based human activity recognition (HAR) using wearable sensor data. *International Journal of Information Management Data Insights*, 1(2), 100046. <u>https://doi.org/10.1016/j.jjimei.2021.100046</u>
- Human activity recognition (HAR) using machine learning. (z.d.). Neural Designer is a registered trademark of Artificial Intelligence Techniques, SL <u>https://www.neuraldesigner.com/solutions/activity-recognition</u>
- Jagtap, S., & Duong, L. N. K. (2019). Improving the new product development using big data: a case study of a food company. *British Food Journal*, 121(11), 2835–2848. <u>https://doi.org/10.1108/bfj-02-2019-0097</u>
- JuanIrache, J. (2022, February 3). gpmf-extract. GitHub. Retrieved January 23, 2023, from https://github.com/JuanIrache/gpmf-extract/tree/master/samples
- Kaptein, M.C., Nass, C., Markopoulos, P.. 2010. Powerful and consistent analysis of likert-type rating scales. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '10). Association for Computing Machinery, New York, NY, USA. 2391–2394. https://doi.org/10.1145/1753326
- Lavanya Devi, G., & Viziananda Row, S. (2017). A Random Forest based Classification Model for Human Activity Recognition. *International Journal of Advanced Scientific Technologies Engineering and Management Sciences*, *3*(1), 2454-356X. <u>http://www.ijastems.org/wp-</u>

content/uploads/2017/03/v3.si1_.59.A-Random-Forest-based-Classification-Model-for-Human-Activity-Recognition.pdf

- Nurwulan, N. R., & Selamaj, G. (2020). Random Forest for Human Daily Activity Recognition. Journal of Physics: Conference Series, 1655(1), 012087. <u>https://doi.org/10.1088/1742-6596/1655/1/012087</u>
- Pryke, B. (2022, 4 oktober). *How to Use Jupyter Notebook: A Beginner's Tutorial*. Dataquest. <u>https://www.dataquest.io/blog/jupyter-notebook-tutorial/</u>
- Rainock, M., Everett, D., Pack, A., Dahlin, E. C. & Mattson, C. A. (2018). The social impacts of products: a review. *Impact Assessment and Project Appraisal*, 36(3), 230–241. https://doi.org/10.1080/14615517.2018.1445176
- Talari, S. (2022, November 1). *Random Forest vs Decision Tree: Key Differences*. KDnuggets. Retrieved January 14, 2023, from <u>https://www.kdnuggets.com/2022/02/random-forest-decision-tree-key-differences.html</u>
- Wang, Jindong, et al. "Deep learning for sensor-based activity recognition: A survey." Pattern recognition letters 119 (2019): 3-11
- Yuan, W., Han, Y., Guan, D., Lee, S., & Lee, Y. K. (2011). Initial training data selection for active learning. Proceedings of the 5th International Conference on Ubiquitous Information Management and Communication. <u>https://doi.org/10.1145/1968613.1968619</u>

Appendix A: Survey

Introductory questions

Thank you for participating in this evaluation. To start off, please answer some questions about yourself!

0.1 Can you briefly tell us something about your education? (degree, year, main topic(s) of research/interest)

.....

0.2 Pick all statements that apply to your experience in Machine Learning (ML):

□ I've come across interesting AI applications on the news and social media, but I don't know anything about the underlying process

□ I've worked with some tools that use ML before, but my knowledge doesn't go much deeper than just putting in data and getting results

□ I could list examples of software that use ML and know how they generally

- work, but wouldn't consider myself an expert on technicalities like preprocessing
- □ I come across ML a lot in my day-to-day life, but not the coding part
- □ I would be able to code a simple ML algorithm myself
- □ I consider myself to have enough experience to create complex models
- I'm not interested in it at all
- D Other:
- 0.3 What is your gender?
 - □ Male
 - □ Female
 - □ Other,
 - □ I'd rather not say

0.4 *Optional:* Tell us something about your expectations. What do you think you'll have to do, how well do you think you'll do?

.....

Loading data

Start off by loading your data, then run the first cell. Answer the questions below.

1.1 Did you get any errors? □ Yes □ No

If you answered yes to the first question, ask a team member for help

1.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult O O O O Easy

1.3 *Optional:* Any other remarks?

.....

.....

Preprocessing

If you didn't finish the previous step, ask a team member for help. After loading your data, you can continue by performing preprocessing.

2.1 Did you get any errors? □ Yes □ No

If you answered yes to the first question, ask a team member for help

2.2 On a scale of 1-5, how would you rate your own ability to perform this task? Difficult о о о о о Easy 2.3 On a scale of 1-5, how well do you understand what happened in this step? Not at all 0 0 0 о 0 I know exactly what I did and why 2.4 Optional: Any other remarks?

Get output

After completing the previous steps, you're ready to use the preprocessed data in a machine learning algorithm! Run the next cell(s) and see the magic happen.

3.1 Did you get any errors? □ Yes □ No

If you answered yes to the first question, ask a team member for help

3.2	Describe brief	fly what	you se	e:			
3.3	On a scale of	1-5, ho	w would	d you ra	te your	own ab	ility to perform this task?
	Difficult	0	0	0	0	0	Easy
3.4	On a scale of	1-5, ho	w well o	do you ı	understa	and wha	at happened here?
	Not at all	0	0	0	0	0	I know exactly how the algorithm works
3.5	<i>Optional:</i> Any	other r	emarks	?			

Final thoughts

Now that you went through all the steps, you'll reflect on the process as a whole in these last questions. Please keep in mind that these questions are about user-friendliness, and we don't require you to understand the technicalities behind the scenes.

4.1 Reflect on the process. Was following the steps easier/more difficult than you expected? Did your impression of machine learning change in any way?

.....

..... 4.2 How difficult did you find this on a scale of 1-5? Difficult O о 0 0 O Easy 4.3 How well do you understand what you did? Give your answer on a scale of 1-5. Not at all 0 0 0 0 0 I know exactly what I did and why 4.4 Do you have any recommendations for us to help improve the guide?

Appendix B: Survey Notes

Evaluation 1

oding experience - has Anaconda ompletion time - 30 minutes esigners' expectations - easier tha	installed, but doesn't know much about ML In expected
Results	
no experience on an, my	at they used ML look in the post they at they used ML algorithms
About the process	
 finding Note book ~: not clear that the 'press play'? -> but it and 'run your first (ell'- work clear) nosa and ran cells w (speed increased nechect explonation program poessed enter instact 	small picture on bebsite? be decument is IN the Ane conda app R(Notebook) - might be more clear says hun' when designer down leaded the files themselves > how about the Ind? at it is same, but that inthout any instruction by the 4th one when to run, was scared of breaking the ad of run Plan

Evaluation 2

[name]: Wat doet die r voor de datafile? Labeling is niet duidelijk, wat is de persoon aan het doen? Error verschijnt bij labeling, maar is niet duidelijk waarom en gaat heel snel weer weg. --> wellicht error messages uitschakelen zoals bij de eerste cel. Waarom staan er ineens getallen achter bij het labelen?

Evaluation 3

[name] : [name] leest heel slecht
Maar wellicht vertellen dat je de rode tekst moet aanpassen.
Geeft geen error bij verkeerde video file!
Per ongeluk nieuw label aangemaakt
Niet begrijpen dat je meerdere dingen hetzelfde kan labelen
Laden van alle packages duurt lang.
Advised aanpassen.
Niet duidelijk dat het een filmpje is.
Plot verschijnt inneens
De frames zijn niet duidelijk.
Geen redo button bij het labelen.
Grafiek is niet duidelijk.
Testing loopt vast als je nog eens test. --> kernel restarten.

Evaluation 4

-Cell is onduidelijk wat het is

-hoe cell wordt gerund wordt niet meteen begrepen

- -Wist niet wanneer cell klaar is
- -Lastig om de file te vinden die verandert moet worden
- -Spelfouten in docu
- -Nieuwe label toegevoegd werkt goed
- -Labeling duurt langer dan de 20 samples

-Twijfel keuze tussen wat op de video wordt weergeven gebeurt regelmatig, maar wordt wel steeds beter naarmate voortgang

-Leest snel over text heen, waardoor de concepten niet goed worden begrepen

Evaluation 5

All cells, niet alls cells De input files blijven lastig om te localiseren. Er komt inneens grafiek Geen aanduiding dat labeling klaar is, ook progressie: wellicht een x/30 gelabeld ofzo. Model maakt aanname en test hij met mijn input? Het is niet duidelijk dat het een tijdlijn is.

Evaluation 6

- weet niet wanneer runnen klaar is of gebeurt
- programma is van te voren al gerund ofzo, zorgt voor twijfel of iets klaar is met runnen of uberhaupt is gerund
- weet niet wat frame size enzo is doordat usecase van notebook niet duidelijk is. Niet duidelijk wat het doel is. Daarom is uitlrg in notebook vaag
- files invoegen gaat goed
- spelfouten
- y for yes maar n staat voor label toevoegen
- user leest wel alle tekst door
- typ balkje verplaatst steeds bij labelling
- user wist niet dat ze een mok was
- labelling frame is wel fijn, user wist hoebeel ze nog te gaan had
- verschil tussen oppakken en neerzetten is soms lastig te zien. (User labelled verkeerd)

- user snapt niet wat er allemaal staat, maar krijgt wel het gevoel of ze aan het coderen is -niet duidelijk voor user waarom dingen worden gedaan die gedaan worden (zoals framesize instellen enzo) pas toen video in beeld kwam werd het duidelijk Eigen notes over survey:

- survey soms in huidige tijd niet verleden tijd
- survey is opgesteld alsof je terwijl je bezig bent met de notebook, je ook de survey invult.
- de get output deel is vaag met wat er bedoelt wordt met output

Evaluation 7

Explain extracted features Add where to change amount of iterations remove naar het plafond kijken Explain the stages in AL, including the cross Remove print statements before clearing the output Explain n and x as opt Remove figure after A Explain error rate better Explain novelties better. Add that only watching is enough. Explain what should be changed in the code block

Evaluation 8

Lot of text appears -> mute code block? Confusingly large amt of code in 1 block

Evaluation 9

Curious about the amount of files that were created Was very interested in the behind the scenes, disappointed that it wasn't included more Interested in active learning and could start to understand it.

Large amount of code and output etc. for inexperienced users, didn't mind himself

Appendix C: Survey results

Evaluation 1

iiiu	oductory questions
Than abou	k you for participating in this evaluation. To start off, please answer some questions t yourself!
0.1 of res	Can you briefly tell us something about your education? (degree, year, main topic(s) search/interest)
	have - CT certificate coreficient english), new
	Workiz in product design
0.2	Pick all statements that apply to your experience in Machine Learning (ML): I've come across interesting AI applications on the news and social media, but I don't know anything about the underlying process I've worked with some tools that use ML before, but my knowledge doesn't go much deeper than just putting in data and getting results I could list examples of software that use ML and know how they generally work, but wouldn't consider myself an expert on technicalities like preprocessing
	I come across ML a lot in my day-to-day life, but not the coding part I would be able to code a simple ML algorithm myself
	 I consider myself to have enough experience to create complex models I'm not interested in it at all Other: <u>folls</u> <u>1</u> <u>wasn't aven a ware of that use ML</u>
0.3	What is your gender?
	□ Other, □ I'd rather not say
).4	<i>Optional:</i> Tell us something about your expectations. What do you think you'll have to
10, NU	understand the general warkins op it a little
	letter.

_	ading o	lata					
Star	t off by loadir	ng your	data, the	en run t	he first	cell. Ans	wer the questions below.
1.1	Did you g • Yes	et any e	errors? No	/			
lf y	ou answered	I yes to	the first	questio	n, ask a	team m	nember for help
1.2	On a scal	e of 1-8	now we	ould yo	u rate ye	our own	ability to perform this task?
	Difficult	0	Q	0	0	X	Easy
1.3	Optional:	Any oth	er remar	ks?			
	Mnt h	ell					
you o 2.1	Did you ge	by perfo by any er	rors?	ep, ask reproce	a team essing.	member	r for help. After loading your data,
If yo	ou answered	yes to tl	he first q	uestion	i, ask a	team me	ember for help
2.2	On a scale	of 1-5,	how wo	uld you	rate yo	ur own a	ability to perform this task?
	Difficult	0	0	0	X	0	Easy
	On a scale	of 1-5,	how wel	l do yo	u under	stand wh	nat happened in this step?
2.3					121		
2.3	Not at all	0	×	0	0	0	I know exactly what I did and why
2.3 2.4	Not at all Optional: A	0 ny other	🔉 r remark	0 s?	0	0	I know exactly what I did and why
2.3 2.4	Not at all Optional: A Not to t	0 .ny other <i>6119 p</i> (≫ r remark <i>Coficie</i>	0 s? t.,k.K	0 4 Cxlc	o utig	I know exactly what I did and why
2.3 2.4	Not at all Optional: A Not to t Vez ca	0 ny other folly pc	≫ r remark <i>Caficter</i>	0 s? t.,. <i>k.</i> K	0 4. <i>(xee</i>	0 4tig	I know exactly what I did and why
2.3 2.4	Not at all Optional: A <u>Not for</u>	0 .ny other	≫ r remark <i>Gficie</i>	0 s? Ħ.,. k.Ħ	0 <u>1. (xee</u>	0 4 <i>t</i> ; ₇	I know exactly what I did and why

learn	completing the previous steps, you're ready to use the preprocessed data in a machine ing algorithm! Run the next cell(s) and see the magic happen.										
3.1	Did you get any errors? Set Yes □ No deleted cell #8										
If yo	ou answered yes to the first question, ask a team member for help										
3.2	Describe briefly what you see:										
	pictures										
3.3	On a scale of 1-5, how would you rate your own ability to perform this task?										
	Difficult 0 0 0 0 😿 Easy										
3.4	On a scale of 1-5, how well do you understand what happened here?										
	Not at all 0 0 X 0 0 I know exactly how the algorithm works										
3.5	Optional: Any other remarks?										
	1 wantod to see my progress while labeling										
Fin	al thoughts										
Now t quest don't	hat you went through all the steps, you'll reflect on the process as a whole in these last ions. Please keep in mind that these questions are about user-friendliness, and we require you to understand the technicalities behind the scenes.										
4.1	Reflect on the process. Was following the steps easier/more difficult than you ted? Did your impression of machine learning change in any way?										
expec	easier than expected, geein all the code was										
expec	. ,										
spec	overwhelmin. But to executeit, I was pleasantly										

							••••••	
4.2	How difficult	did yo	u find th	his on a	scale o	f 1-5?		
	Difficult O		0		X8 .		0	O Easy
4.3	How well do	you u	ndersta	nd what	t you dia	? Give	your answer on a	scale of 1-5.
	Not at all	0	×	0	0	0	I know exactly wh	at I did and why
4.4	Do you have	e any r	ecomme	endatio	ns for us	s to help	improve the guid	e?
	mentio	red.	befo.	re				- contraction of the

Evaluation 2

Introductory questions

Thank you for participating in this evaluation. To start off, please answer some questions about yourself!

0.1 Can you briefly tell us something about your education? (degree, year, main topic(s) of research/interest)

I am a second year bachelor student on the degree Industrial Engineering at TU Delft.

0.2 Pick all statements that apply to your experience in Machine Learning (ML):

 I've come across interesting AI applications on the news and social media, but I don't know anything about the underlying process

• I've worked with some tools that use ML before, but my knowledge doesn't go much deeper than just putting in data and getting results

I could list examples of software that use ML and know how they generally work, but wouldn't consider myself an expert on technicalities like preprocessing

- I come across ML a lot in my day-to-day life, but not the coding part
- I would be able to code a simple ML algorithm myself
- I consider myself to have enough experience to create complex models
- I'm not interested in it at all
 Other:
 - Other:

0.3 What is your gender?

□ Male

- Female
- □ Other,
- I'd rather not say

0.4 *Optional:* Tell us something about your expectations. What do you think you'll have to do, how well do you think you'll do?

I'm not sure, I don't like pressure

.....

.....

.....

Start off by loading your data, then run the first cell. Answer the questions below.

1.1 Did you get any errors? □ Yes ● No

If you answered yes to the first question, ask a team member for help

1.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult	0	0	0	0	•	Easy
-----------	---	---	---	---	---	------

1.3 Optional: Any other remarks?

.....

Preprocessing

If you didn't finish the previous step, ask a team member for help. After loading your data, you can continue by performing preprocessing.

2.1 Did you get any errors? □ Yes ● No

If you answered yes to the first question, ask a team member for help

2.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult	0	0	0	0	\bullet	Easy
-----------	---	---	---	---	-----------	------

2.3 On a scale of 1-5, how well do you understand what happened in this step?

Not at all 0 0 • 0 0 I know exactly what I did and why

2.4 *Optional:* Any other remarks?

I wondered how the capitalisation worked, and only knew that Mok was for the video because Gijs told me so.

After completing the previous steps, you're ready to use the preprocessed data in a machine learning algorithm! Run the next cell(s) and see the magic happen.

3.1 Did you get any errors? □ Yes ● No

If you answered yes to the first question, ask a team member for help

	,			,			
3.2	Describe brie	fly wha	t you se	ee:			
						•••••	
3.3	On a scale of	f 1-5, ho	ow woul	ld you r	ate you	r own al	bility to perform this task?
	Difficult	0	0	0	0	•	Easy
3.4	On a scale of	f 1-5, ho	ow well	do you	unders	tand wh	at happened here?
	Not at all	•	0	0	0	0	I know exactly how the algorithm works
3.5	Optional: Any	/ other I	emarks	s?			
	Novelty and	l graph	not cle	ear			

Final thoughts

Now that you went through all the steps, you'll reflect on the process as a whole in these last questions. Please keep in mind that these questions are about user-friendliness, and we don't require you to understand the technicalities behind the scenes.

4.1 Reflect on the process. Was following the steps easier/more difficult than you expected? Did your impression of machine learning change in any way?

Easy steps to follow, the main goal wasn't really clear but the program worked well.

4.2	How difficult of	did you	find this on a s	scale of	1-5?		
	Difficult 0		0	0		0	Easy
4.3	How well do y	you und	erstand what	you did?	? Give y	our answer or	a scale of 1-5.
	Not at all	0	0	0	0	I know exactly	what I did and why
4.4	Do you have	any rec	ommendations	s for us	to help	improve the g	uide?

Introductory questions

Thank you for participating in this evaluation. To start off, please answer some questions about yourself!

0.1 Can you briefly tell us something about your education? (degree, year, main topic(s) of research/interest)

2e jaar Industrieel Ontwerpen

0.2	 Pick all statements that apply to your experience in Machine Learning (ML): I've come across interesting Al applications on the news and social media, but I don't know anything about the underlying process I've worked with some tools that use ML before, but my knowledge doesn't go much deeper than just putting in data and getting results I could list examples of software that use ML and know how they generally work, but wouldn't consider myself an expert on technicalities like preprocessing I come across ML a lot in my day-to-day life, but not the coding part I consider myself to have enough experience to create complex models I'm not interested in it at all
0.3	What is your gender? Male Female Other, I'd rather not say
0.4 do, ho	<i>Optional:</i> Tell us something about your expectations. What do you think you'll have to w well do you think you'll do?
	i think i will do okay but not great

Start off by loading your data, then run the first cell. Answer the questions below.

If you answered yes to the first question, ask a team member for help

1.2 On a scale of 1-5, how would you rate your own ability to perform this task?

	Difficult	0	•	•	0	0	Easy
1.3	Optional: Any	/ other I	remarks	?			

Preprocessing

If you didn't finish the previous step, ask a team member for help. After loading your data, you can continue by performing preprocessing.

2.1 Did you get any errors? □● es □ No

If you answered yes to the first question, ask a team member for help

2.2	On a scale of 1-5, how would you rate your own ability to perform this task?								
	Difficult	0	•	ê	0	0	Easy		
2.3	On a scale of	1-5, hov	v well do	o you u	ndersta	nd wha	t happened in this step?		
	Not at all	0	0	•	•	0	I know exactly what I did and why		
2.4	Optional: Any	other re	marks?						

After completing the previous steps, you're ready to use the preprocessed data in a machine learning algorithm! Run the next cell(s) and see the magic happen.

3.1 Did you get any errors? ●Yes □ No

If you answered yes to the first question, ask a team member for help

3.2	Describe briefly what you see:											
	The programm froze											
3.3	On a scale	of 1-5, h	IOW WOL	uld you	rate yo	ur own a	ability to perform this task?					
	Difficult	0	0	•	0	0	Easy					
3.4	On a scale	of 1-5, h	iow wel	l do you	under	stand w	hat happened here?					
	Not at all	0	0	0	0	0	I know exactly how the algorithm works					

3.5 Optional: Any other remarks?

Final thoughts

Now that you went through all the steps, you'll reflect on the process as a whole in these last questions. Please keep in mind that these questions are about user-friendliness, and we don't require you to understand the technicalities behind the scenes.

4.1 Reflect on the process. Was following the steps easier/more difficult than you expected? Did your impression of machine learning change in any way?

.....

It was doable, but when an error occured I did not know what to do or where

I needed to look to solve the problem.

.....

4.2	How difficult did you find this on a scale of 1-5?										
	Difficult 0		0		0	•	0	0 Easy			
4.3	How well do you understand what you did? Give your answer on a scale of 1-5.										
	Not at all	0	0 •	0	0	0	I know exactly	what I did and why			
4.4	Do you have a I did not read that, I was m	any rec the re ostly fo	commen st of the cussing	dations code, on loo	s for us and I di king for	to help d not ge the line	improve the guet a sens of whe	uide? nat i was doing because of he.correct answer			

Introductory questions

Thank you for participating in this evaluation. To start off, please answer some questions about yourself!

0.1 Can you briefly tell us something about your education? (degree, year, main topic(s) of research/interest)

lo delft, 3th year, interest: automotive design/ furniture design

.....

0.2 Pick all statements that apply to your experience in Machine Learning (ML):

I've come across interesting AI applications on the news and social media, but I don't know anything about the underlying process
I've worked with some tools that use ML before, but my knowledge doesn't go much deeper than just putting in data and getting results

□ I could list examples of software that use ML and know how they generally work, but wouldn't consider myself an expert on technicalities like preprocessing

- □ I come across ML a lot in my day-to-day life, but not the coding part
- I would be able to code a simple ML algorithm myself
- I consider myself to have enough experience to create complex models
- I'm not interested in it at all
- D Other:
- 0.3 What is your gender?
 - * Male
 - Female
 - Other,
 - I'd rather not say

0.4 *Optional:* Tell us something about your expectations. What do you think you'll have to do, how well do you think you'll do?

Start off by loading your data, then run the first cell. Answer the questions below.

```
1.1 Did you get any errors?

<sup>★</sup> Yes □ No
```

If you answered yes to the first question, ask a team member for help

1.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 🔨 0 0 Easy

1.3 Optional: Any other remarks?

.....

Preprocessing

If you didn't finish the previous step, ask a team member for help. After loading your data, you can continue by performing preprocessing.

2.1 Did you get any errors? □ Yes □*No

If you answered yes to the first question, ask a team member for help

2.2	On a scale of 1-5, how would you rate your own ability to perform this task?
-----	--

Difficult 0 0 0 🕅 Easy

2.3 On a scale of 1-5, how well do you understand what happened in this step?

Not at all 0 0 0 0 I know exactly what I did and why

2.4 Optional: Any other remarks?

Easy to do but i did not know what i was doing but it did work

After completing the previous steps, you're ready to use the preprocessed data in a machine learning algorithm! Run the next cell(s) and see the magic happen.

If you answered yes to the first question, ask a team member for help

3.2	Describe briefly what you see:										
	A graph in which the results are shown										
3.3	On a scale of	1-5, hc	w woul	d you ra	ate your	own at	bility to perform this task?				
	Difficult	0	0	0	٩	0	Easy				
3.4	On a scale of	1-5, hc	w well	do you	underst	and wh	at happened here?				
	Not at all	0	٥	0	0	0	I know exactly how the algorithm works				
3.5	Optional: Any	other r	emarks	?							

Final thoughts

Now that you went through all the steps, you'll reflect on the process as a whole in these last questions. Please keep in mind that these questions are about user-friendliness, and we don't require you to understand the technicalities behind the scenes.

4.1 Reflect on the process. Was following the steps easier/more difficult than you expected? Did your impression of machine learning change in any way?

I once saw somebody register datapoints on a cow to know its position and that seemed to bereally easy and this was on the same level as I expected

.....

4.2	How difficult did you find this on a scale of 1-5?											
	Difficult 0		0		0		œ	0	Easy			
4.3	How well do you understand what you did? Give your answer on a scale of 1-5.											
	Not at all	0	۴	0	0	0	l know exa	ctly what	I did and why			
4.4	Do you have a	any rec	ommen	dations	for us	to help i	mprove the	e guide'	?			
	Maybe make make it more	some f	ext visu standabl	al with e, spell	flowcha ing	arts or so	omething t	ecause	that will probably			

Introductory questions

Thank you for participating in this evaluation. To start off, please answer some questions about yourself!

0.1 Can you briefly tell us something about your education? (degree, year, main topic(s) of research/interest)

second year industrial design engineering

.....

0.2 Pick all statements that apply to your experience in Machine Learning (ML):

 I've come across interesting AI applications on the news and social media, but I don't know anything about the underlying process
 I've worked with some tools that use ML before, but my knowledge doesn't go

I've worked with some tools that use ML before, but my knowledge doesn't go much deeper than just putting in data and getting results

□ I could list examples of software that use ML and know how they generally work, but wouldn't consider myself an expert on technicalities like preprocessing

- I come across ML a lot in my day-to-day life, but not the coding part
- I would be able to code a simple ML algorithm myself
- I consider myself to have enough experience to create complex models
- I'm not interested in it at all
- D Other:
- 0.3 What is your gender?

Male

Female

- D Other,
- I'd rather not say

0.4 *Optional:* Tell us something about your expectations. What do you think you'll have to do, how well do you think you'll do?

test a model and its usability, whilst performing tasks with an algorithm. my expectations are quite low, as programming often takes a lot of time and trial and error.

Start off by loading your data, then run the first cell. Answer the questions below.

1.1 Did you get any errors? □ Yes ● No

If you answered yes to the first question, ask a team member for help

1.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 0 € 0 Easy

1.3 Optional: Any other remarks?

clear instructions if you take the time to read them. however it sometimes took some time to find the right text matching with your task.

.....

Preprocessing

If you didn't finish the previous step, ask a team member for help. After loading your data, you can continue by performing preprocessing.

2.1 Did you get any errors? □ Yes ● No

If you answered yes to the first question, ask a team member for help

2.2	On a scale of	1-5, how would	you rate your	own ability to per	form this task?
-----	---------------	----------------	---------------	--------------------	-----------------

Difficult O O O 🖲 O Easy

2.3 On a scale of 1-5, how well do you understand what happened in this step?

Not at all 0 🖲 0 0 0 I know exactly what I did and why

2.4 Optional: Any other remarks?

reading was purely to understand the task, i wasnt trying to understand what the algorithms was performing with the info i gave it.

After completing the previous steps, you're ready to use the preprocessed data in a machine learning algorithm! Run the next cell(s) and see the magic happen.

3.1 Did you get any errors? □ Yes ● No

If you answered yes to the first question, ask a team member for help

3.2 Describe briefly what you see:

i thought the x-axis meant the amount of inputs the algorithm received, whilst the colors meant the action the algorithm conceived to be happening at that time.

3.3 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 0 0 € Easy [●] • èz win gg

3.4 On a scale of 1-5, how well do you understand what happened here?

Not at all 0 0 0 0 0 I know exactly how the algorithm works

3.5 Optional: Any other remarks?

again i was trying to understand what was expected of me, rather than understanding what actions the algorithm was performing. If it was explained i was expected to understand the algorithm i would've read the texts more carefully.

Final thoughts

Now that you went through all the steps, you'll reflect on the process as a whole in these last questions. Please keep in mind that these questions are about user-friendliness, and we don't require you to understand the technicalities behind the scenes.

4.1 Reflect on the process. Was following the steps easier/more difficult than you expected? Did your impression of machine learning change in any way?

following the steps was clear because the actions were clearly marked in the step sheet. sometimes it took a little time to search where the right lines of text were located necessary to perform the tasks in the user test manual. it was more straightforward than i expected, since i only had to fill in particular values instead of writing whole lines of code. the fact an algorithm can analyze a video is quite cool.

4.2	How difficult of	did you fi	nd this o	n a scale of	1-5?		
	Difficult 0		0	0		0	B Easy
4.3	How well do y	/ou unde	erstand w	/hat you did	? Give y	our answer on	a scale of 1-5.
	Not at all	0	0 0		0	I know exactly w	hat I did and why
4.4	Do you have	any reco	mmenda	ations for us	to help i	mprove the gu	ide?

Introductory questions

Thank you for participating in this evaluation. To start off, please answer some questions about yourself!

0.1 Can you briefly tell us something about your education? (degree, year, main topic(s) of research/interest)

3rd year bachelor Industrial Design Enigineering (probably master Dfl)

.....

0.2 Pick all statements that apply to your experience in Machine Learning (ML):
 ✓ I've come across interesting AI applications on the news and social media, but I don't know anything about the underlying process
 I've worked with some tools that use ML before, but my knowledge doesn't go much deeper than just putting in data and getting results

□ I could list examples of software that use ML and know how they generally work, but wouldn't consider myself an expert on technicalities like preprocessing

- I come across ML a lot in my day-to-day life, but not the coding part
- I would be able to code a simple ML algorithm myself
- I consider myself to have enough experience to create complex models
- I'm not interested in it at all
- D Other:
- 0.3 What is your gender?
 - Male
 - Image: Female
 - D Other,
 - I'd rather not say

0.4 *Optional:* Tell us something about your expectations. What do you think you'll have to do, how well do you think you'll do?

I think I have to code something myself, with basic instructions.

Start off by loading your data, then run the first cell. Answer the questions below.

If you answered yes to the first question, ask a team member for help

1.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 0 0 G Easy

1.3 Optional: Any other remarks?

.....

Preprocessing

If you didn't finish the previous step, ask a team member for help. After loading your data, you can continue by performing preprocessing.

If you answered yes to the first question, ask a team member for help

	2.2	On a scale of 1-5,	how would y	ou rate	our own	ability to	perform	this ta	asł
--	-----	--------------------	-------------	---------	---------	------------	---------	---------	-----

Difficult 0 0 0 0 0 Easy

2.3 On a scale of 1-5, how well do you understand what happened in this step?

Not at all 0 0 0 0 1 know exactly what I did and why

2.4 Optional: Any other remarks?

After completing the previous steps, you're ready to use the preprocessed data in a machine learning algorithm! Run the next cell(s) and see the magic happen.

3.1 Did you get any errors? □ Yes ☑ No

If you answered yes to the first question, ask a team member for help

3.2	Describe briefly what you see: visual showing different actions						
3.3	On a scale of	1-5, ho	w would	d you ra	ate your	own ab	ility to perform this task?
	Difficult	0	0	0	0	0	Easy
3.4	On a scale of 1-5, how well do you understand what happened here?						at happened here?
	Not at all	0	0	0	0 ^x	0	I know exactly how the algorithm works
3.5	Optional: Any other remarks?						

Final thoughts

Now that you went through all the steps, you'll reflect on the process as a whole in these last questions. Please keep in mind that these questions are about user-friendliness, and we don't require you to understand the technicalities behind the scenes.

4.1 Reflect on the process. Was following the steps easier/more difficult than you expected? Did your impression of machine learning change in any way?

It was easier than I expected, It was a very convient way of analyzing

a lot of information if you have less time.

4.2	How difficult d	lid you	find this	s on a s	cale of	1-5?			
	Difficult 0		0		0		0	Ø	Easy
4.3	How well do y	ou und	lerstand	l what y	vou did?	Give yo	our answer on	a sc	ale of 1-5.
	Not at all	0	0	0	0	0	I know exactly w	vhat I	did and why
4.4	Do you have any recommendations for us to help improve the guide? Maybe talk about what the person is doing and why at the beginning.								
	What is the end goal?								

Introductory questions

Thank you for participating in this evaluation. To start off, please answer some questions about yourself!

0.1 Can you briefly tell us something about your education? (degree, year, main topic(s) of research/interest)

TB 4e jaar. ICT Systeem analyse 0.2 Pick all statements that apply to your experience in machine learning: I've come across interesting AI applications on the news and social media, but I don't know anything about the underlying process I've worked with some tools that use ML before, but my knowledge doesn't go much deeper than just putting in data and getting results \checkmark I could list examples of software that use ML and know how they generally work, but wouldn't consider myself an expert on technicalities like preprocessing \checkmark I come across ML a lot in my day-to-day life, but not the coding part I would be able to code a simple ML algorithm myself I consider myself to have enough experience to create complex models I'm not interested in it at all П Other: 0.3 What is your gender? V Male Female Other, I'd rather not say 0.4 Optional: Tell us something about your expectations. What do you think you'll have to do, how well do you think you'll do? Train a ML model

I think I'll be fine	

Start off by loading your data, then run the first cell. Answer the questions below.

1.1 Did you get any errors? √ Yes □ No

If you answered yes to the first question, ask a team member for help

1.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 0 🗸 0 Easy

1.3 Optional: Any other remarks?

.....

Preprocessing

If you didn't finish the previous step, ask a team member for help. After loading your data, you can continue by performing preprocessing.

2.1 Did you get any errors? □ Yes √No

If you answered yes to the first question, ask a team member for help

2.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 0 0 🗸 Easy

2.3 On a scale of 1-5, how well do you understand what happened in this step?

Not at all 0 🗸 0 0 0 I know exactly what I did and why

2.4 Optional: Any other remarks?

After completing the previous steps, you're ready to use the preprocessed data in a machine learning algorithm! Run the next cell(s) and see the magic happen.

3.1 Did you get any errors? √Yes □ No

If you answered yes to the first question, ask a team member for help

3.2 Describe briefly what you se

A full bar visualizing the video, the colors in the bar visualize the different labels

.....

3.3 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult	0	0	0	\checkmark	0	Easy
-----------	---	---	---	--------------	---	------

3.4 On a scale of 1-5, how well do you understand what happened here?

Not at all 0 🗸 0 0 0 I know exactly how the algorithm works

3.5 Optional: Any other remarks?

.....

Final thoughts

Now that you went through all the steps, you'll reflect on the process as a whole in these last questions. Please keep in mind that these questions are about user-friendliness, and we don't require you to understand the technicalities behind the scenes.

4.1 Reflect on the process. Was following the steps easier/more difficult than you expected? Did your impression of machine learning change in any way?

I just blindly followed the steps, did not even know that I was working with a video.

4.2	How difficult d	lid you	find this	on a s	cale of	1-5?			
	Difficult 0		0		0		\checkmark	0	Easy
4.3	.3 How well do you understand what you did? Give your answer on a scale of 1-5.								
Notatall 0 🎸 0 0 Iknowe:								hat I	did and why
4.4	Do you have any recommendations for us to help improve the guide?								
	Write a nice	introd	uction c	on wha	t you a	re abo	ut to train, why	<u>yo</u>	u train and what benefits
	will come from training the model.								

Introductory questions

Thank you for participating in this evaluation. To start off, please answer some questions about yourself!

Can you briefly tell us something about your education? (degree, year, main topic(s) 0.1 of research/interest)

BSC IDE, year 2, Copid Prototyping own Company in degigh

0.2

Pick all statements that apply to your experience in Machine Learning (ML): I've come across interesting AI applications on the news and social media, but I don't know anything about the underlying process

I've worked with some tools that use ML before, but my knowledge doesn't go

much deeper than just putting in data and getting results I could list examples of software that use ML and know how they generally

work, but wouldn't consider myself an expert on technicalities like preprocessing

I come across ML a lot in my day-to-day life, but not the coding part

- I would be able to code a simple ML algorithm myself

I consider myself to have enough experience to create complex models I'm not interested in it at all

Other:

0.3 What is your gender?

Male

- Female
- D Other,
- I'd rather not say

Optional: Tell us something about your expectations. What do you think you'll have to 0.4 do, how well do you think you'll do?

probably start thinking about how mI works and coding ------

TUDelft

Start off by loading your data, then run the first cell. Answer the questions below.

If you answered yes to the first question, ask a team member for help

1.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 0 Ø 0 Easy

1.3 Optional: Any other remarks?

a lot of text does apen offer dicking the button

Preprocessing

If you didn't finish the previous step, ask a team member for help. After loading your data, you can continue by performing preprocessing.

If you answered yes to the first question, ask a team member for help

2.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 Q 0 0 Easy

2.3 On a scale of 1-5, how well do you understand what happened in this step?

Notatall 0 @ 0 0 I know exactly what I did and why

2.4 Optional: Any other remarks?

A lot of code, hard to read maybe spit it up?

After completing the previous steps, you're ready to use the preprocessed data in a machine learning algorithm! Run the next cell(s) and see the magic happen.

If you answered yes to the first question, ask a team member for help

3.2 Describe briefly what you see:

A video to classify, with Plats and more info

3.3 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 0 0 Easy

3.4 On a scale of 1-5, how well do you understand what happened here?

NOT at all	0	0	۲	0	0	I know exactly how the algorithm works
------------	---	---	---	---	---	--

3.5 Optional: Any other remarks?

Final thoughts

....

Now that you went through all the steps, you'll reflect on the process as a whole in these last questions. Please keep in mind that these questions are about user-friendliness, and we don't require you to understand the technicalities behind the scenes.

4.1 Reflect on the process. Was following the steps easier/more difficult than you expected? Did your impression of machine learning change in any way?

way easier than excepted. ML Es looks every easy presented line this Although it is probably harder

4.2	How difficul	t did you find	this on a scale	of 1-5?		
	Difficult 0	0	0		0	0 Easy
4.3	How well do	you understa	and what you o	lid? Give y	our answe	r on a scale of 1-5.
	Not at all	0 0	© 0	0	I know exa	ctly what I did and why
4.4	Do you have I in der Steps bot n	e any recomm stood but hi at as	endations for the p of the d much a;	us to help i <i>VT pele</i> <i>ef ails</i> , <i>i wa</i>	mprove the cf th , I dea , ted	e guide? 1.e 1. Jeach 40

Introductory questions

Thank you for participating in this evaluation. To start off, please answer some questions

Can you briefly tell us something about your education? (degree, year, main topic(s) 0.1 of research/interest)

master first year

Pick all statements that apply to your experience in Machine Learning (ML): 0.2 I've come across interesting AI applications on the news and social media, but I don't know anything about the underlying process

I've worked with some tools that use ML before, but my knowledge doesn't go much deeper than just putting in data and getting results

.....

I could list examples of software that use ML and know how they generally

- work, but wouldn't consider myself an expert on technicalities like preprocessing
 - I come across ML a lot in my day-to-day life, but not the coding part
- 5 I would be able to code a simple ML algorithm myself
- I consider myself to have enough experience to create complex models I'm not interested in it at all
- Other:

0.3 What is your gender?

- Male
 - Female
 - Other,
 - I'd rather not say

Optional: Tell us something about your expectations. What do you think you'll have to 0.4 do, how well do you think you'll do?

beature extraction, traing and testing

Start off by loading your data, then run the first cell. Answer the questions below.

1.1	Did you ge	t any errors?
	Yes	n No

If you answered yes to the first question, ask a team member for help

1.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 0 0 Q Easy

1.3 Optional: Any other remarks?

Teally easy interresting affroach with mindowing

Preprocessing

If you didn't finish the previous step, ask a team member for help. After loading your data, you can continue by performing preprocessing.

2.1 Did you get any errors? □ Yes □ No

If you answered yes to the first question, ask a team member for help

2.2 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 0 0 Ø Easy

2.3 On a scale of 1-5, how well do you understand what happened in this step?

Not at all 0 0 0 0 🖉 I know exactly what I did and why

2.4 Optional: Any other remarks?

undering is great for lots of files are being mob , tempting to look Superstandered scafer ? what choes H da? **f**uDelft

After completing the previous steps, you're ready to use the preprocessed data in a machine learning algorithm! Run the next cell(s) and see the magic happen.

3.1	Did you ge	et any errors?
	Yes	ø No

If you answered yes to the first question, ask a team member for help

3.2 Describe briefly what you see:

Very interesting active learning, never used by novels and ghat are very coal

3.3 On a scale of 1-5, how would you rate your own ability to perform this task?

Difficult 0 0 0 0 Easy

3.4 On a scale of 1-5, how well do you understand what happened here?

Not at all 0 0 0 0 0 I know exactly how the algorithm works

3.5 Optional: Any other remarks?

Just very au soul

Final thoughts

Now that you went through all the steps, you'll reflect on the process as a whole in these last questions. Please keep in mind that these questions are about user-friendliness, and we don't require you to understand the technicalities behind the scenes.

4.1 Reflect on the process. Was following the steps easier/more difficult than you expected? Did your impression of machine learning change in any way?

It was super sange large learned some things like active learning made me Cuzions

							••••••	
4.2	How difficult did you find this on a scale of 1-5?							
	Difficult 0		0		0		0	Easy
4.3	How well do	you un	derstar	nd what	you did	? Give	your ansv	ver on a scale of 1-5.
	Not at all	0	0	0	0	۲	I know e	exactly what I did and why
4.4	Do you have for pe to mus	e any re cfle ch. c o	comme wit de?	endation L L V_e	s for us	to help Dece	improve ccenceP	the guide? a little

Appendix D: Performance graphs

Figure D.1: All features big dataset

Figure D.2: All features small dataset

Figure D.3: Frequency features small dataset

Figure D.4: Frequency features big dataset

Appendix E: Active Learning code

def	find most ambiguous id(self) -> tuple[int, int Any, Any]:
	"""Finds the most ambiguous sample. The unlabeled sample with the greatest
	difference between most and second most probably classes is the most ambiguous.
	Returns only the id of this sample""
	try:
	# Fit the model with the datapoints that we have currently labeled.
	<pre>self.model.fit(self.preds[:, 3:], self.preds[:, 1])</pre>
	# Use this model to get probabilities of datapoints belonging to a certain class.
	<pre>sorted_preds = np.sort(self.model.predict_proba(self.unpreds[:, 3:]), axis=1)</pre>
	# Basses for the lowest margins
	lowest_margin = 2
	lowest_margin_sample_id: int = 0
	# Append an empty list for the results of this iteration
	<pre>self.gini_margin_acc.append([0., 0., 0.])</pre>
	# Make a list of the unlabeled ids and sort it
	unlbld = list(self.unlabeled_ids)
	unlbld.sort()
	# Iterate for the length of datapoints that you have not yet labeled
	<pre>for i in range(sorted_preds.shape[0]):</pre>
	# Subtract from the most certain class the secon to most certain class
	margin = sorted_preds[i, -1] - sorted_preds[i, -2]
	<pre># Is it the lowest?</pre>
	if margin < lowest_margin:
	<pre>lowest_margin_sample_id = self.unpreds[i, 0]</pre>
	lowest_margin = margin
	# Add the gini of the datapoint to gini of this iteration
	<pre>self.gini_margin_acc[-1][0] += self.gini_impurity_index(list(sorted_preds[i, :]))</pre>
	# Make it an average and add the lowest margin
	self.gini_margin_acc[-1][0] /= len(unlbld)
	self.gini_margin_acc[-1][1] = lowest_margin
	les_probs = self.model.predict_proba(
	<pre>self.unpreds[np.where(self.unpreds[:, 0] == lowest_margin_sample_id)[0], 3:]).tolist()[0]</pre>
	# Add the accuracy, this is only for a plot
	<pre># self.gini_margin_acc[-1][2] = accuracy_score(self.model.predict(self.X_test[:, 3:]), self.y_test)</pre>
	return lowest_margin_sample_id, lowest_margin, les_probs
	# Exception mostly for testing
	except ValueError:
	raise ValueError(self.preds)

Figure E.1: find_most_ambiguous_id(self) in active_learning.py

def	<pre>set_starting_points(self, n_samples: int) -> None:</pre>			
	"""Generates training set by selecting random starting points, labeling them, and checking if there's an			
	instance of every activity""			
	# Keep track of what activities we have labeled already			
	<pre>seen_activities = [] # list of strings</pre>			
	# Amount of datapoints that we randomly sample			
	range_var = n_samples * len(self.labels)			
# Generate random points				
	for i in range(range_var):			
	# Pick a random point from X_pool			
	while True:			
	# Set a random id that is in the X_pool and has not yet been labeled			
	<pre>random_id = random.randint(0, self.datapd.shape[0])</pre>			
	if random_id not in self.labeled_ids and random_id in self.X_pool['ID']:			
	break			
	# Give the timestamp to the identification module but for testing I have automated it			
	<pre># got_labeled = self.identify(self.datapd.iloc[random_id]['time'])</pre>			
	<pre>got_labeled = self.identify(random_id) # for testing</pre>			
	if got_labeled == 'x':			
	<pre>print(np.where(self.datapd.iloc[:, 0] == random_id))</pre>			
	self.datapd.drop(random_id, 0)			
	self.X_pool.drop(random_id, 0)			
	# If this label was not accounted for we add it to the set of labels			
	else:			
	if got_labeled not in self.labels:			
	self.labels.append(got_labeled)			
	seen_activities.append(got_labeled)			
	# Add the ID to the list			
	self.labeled_ids.append(random_id)			
	# Keep adding points until every activity is in the training set (found a sample of all the labels that we expected)			
	# Randomized phase is done			
	for i in range(len(self.labeled_ids)):			
	print(np.where(self.labeled_ids[i]), self.labeled_ids[i])			
	self.X pool.at/self.labeled_ids/i/. 'label'/ = seen_activities[i]			

Figure E.2: randomized sampling function set_starting_points(self, n_samples) in active_learning.py

Figure E.3: clustered_starting_points(self, n_samples) in active_learning.py

Appendix F: Requirements (MoSCoW)

M.1 Must support the use of accelerometer and gyroscope by correctly preprocessing the sensor data by week 4

M.2 We must have collected and preprocessed at least 30 minutes of simple sensor data before week 5

M.3 Must create a product that can distinguish between at least 2 different activities by week 6

M.4 Must create a product that is able to detect a non-classified activity by week 7

M.5 Must find the best performing ML techniques according to sensor data, and integrate it in our product before Christmas break

M.6 Must have a classifier that performs better on unseen data than our dummy classifier by week 7

M.7 Must include a guide with step by step instructions on how to use our system in the final product by week 9

S.1 Should write documentation and use code annotations to make it possible to adapt and expand our product

S.2 Should use dimension reduction to visualise behavior in plots in order for the Designer to examine the possibility of any new clusters

S.3 75% of a test panel consisting of IDE students should rate our product a 6.5 or higher **S.4** Should classify activities in at least 3 different contexts

C.1 Could implement a functionality to upload sensor data to the IoT cloud and use data from the IoT cloud

C.2 Could add a functionality of automatically updating the models using data from the real world, using an unsupervised learning technique like clustering

C.3 Could have a form of novelty detection to give designers insight into unexpected behavior and new clusters

W.1 Won't create a model that is able to process data types other than accelerometer and gyroscope

W.2 Won't design a complete system and interface that's fully integrated in the IoT cloud
Appendix G: Ethical reflections

Ethical Reflection 1

Firstly, for our product, there's a trade-off between collecting valuable data and protecting users' privacy. We need to think about the type of data we collect and store ourselves, and encourage designers to collect as much non-personally identifiable information as possible. Although we don't have any influence over how designers store and collect data, we have to be aware that our product leads to designers having to face these issues. It became clear that this is an issue of shifting responsibility.

Secondly, we have to think about the implications of changes to our product. This is especially relevant because we created our product to act as a framework to build and expand upon in the future. Which is why this next part will mainly be discussed from a technological mediation perspective.

As data collection plays a big part within this framework, we need to consider the everexpanding and changing world of data collection and its laws. If the laws become stricter, for example making data collection only available to specific corporations or only allowing specific types of data collection, can the product in its current state still be able to be used as it is?

That is why we need to opt for a product that can easily adapt to changing norms. This adaptability can be achieved by making the product as open as possible. The user can change the code and the way data is collected and processed to their needs and to societal norms. However, we will need to acknowledge that robustness may be decreased because of the flexible nature of our product. Some users might use our product in an unintended way, which may result in unethical choices made by our model.

Lastly, it could be interesting to anticipate misuse of our product. Most smartphones come with an accelerometer, gyroscope and camera to collect copious amounts of data. Our activity recognition framework could be misused by governments or corporations as tracking software, for example. However, tracking software already exists, and these outcomes aren't as plausible as other examples we discussed, so we decided that misuse is too broad and hypothetical to make for any relevant analyses.

Ethical Reflection 2

Collecting and storing data is an important part of the process of using our product, even if it isn't part of the product itself. The collection is done by the designers, but we will give them pointers to look out for. However, the responsibility of storing and handling the data not only lies with the Designer but also with us. We give the ability to import different kinds of data and are the ones that can forbid sensitive types of data, such as GPS data, from being imported.

The Designer can also use videos to help classify and label the data. These videos are sensitive because it shows the person what he/she is doing and where they are. This means that this data needs to be handled with care by the designers (Gorkovenko et al., 2020) and us. We can't make sure the designers save and share the data securely, but we can try our

best to make them aware of the problem. This problem arises from the desire for privacy from the participants of the analysis. We can assume that a designer discloses this information about camera usage to the user, but it may be useful to advise the Designer to do this beforehand, just in case.

Another important aspect is the changes our product can make to the decisions of a designer. This tool is made to be as neutral as possible without giving irrelevant or biased information. The models are, however, black boxes and cannot be interpreted by hand. That is why we need to be sure our models are as unbiased as possible. A designer needs to be able to look at the insights to check if the shown results are correct and accurate. If the Designer's prototype gets launched due to the Designer seeing only intended behavior it may, for example, cause a small but reasonable number of users to incorrectly use the prototype resulting in potential injury while using it (Rainock et al., 2018).

Our product also must be as open as possible. The code is therefore annotated and open to everyone to read and change. Because the world is changing around us, such as norms and laws, we should make a model that is able to be changed when needed. For example, when this product is being used in a hospital where there are different requirements than commercial use.

Ethical Reflection 3

The main ethical problems in this project consist of 1) storing and collecting personally identifiable information, 2) influencing designers' decisions, and 3) rapidly changing requirements.

In the first stage of evaluation, we initially tried to work by listing potential ethical problems, then explaining them further. This method actually made it harder to link our findings to an ethical approach; we had come up with crucial points, but struggled to decide which implications, as well as ethical approaches to include in the reflections. Starting from a specific ethical approach probably would've saved us some time. Realising this gave us a way to improve our reflective process in the future. Overall, we should have tried to place ourselves into the perspective of a specific framework, and come up with ethical implications from there. After realising this, we combined our initial findings with a technological mediation analysis. Then, after having identified our own assumptions, we found what to keep in mind during development.

Firstly, the responsibility around data lies with the Designer, as well as with us. This is why we have to both educate the user, and develop our product being aware of this. We should include other functionalities to protect data if our product gets widely implemented in society. Secondly, as this product is a black box, we need to carefully evaluate decisions made because of it. During development for example, we discovered bias in our data collection. The way test data is gathered greatly influences the final model parameters, and we only used our own data to build models. To make the product more inclusive, we would need to get a diverse panel to collect data; we could even add functionalities for disabled and elderly people.

Lastly, we have to take into account how quickly values and laws can change. The model is built to help the Designer improve prototypes, and this depends on society's ever-changing definition of a good product. And since we're using sensitive data, we have to make sure our

product will be legal to use in the future. We do this by creating a product that is easily adaptable to the standard of the world around us. We went about designing our product with these conceptual findings in mind, although further expansion will call for even more extensive VSD methods.

Appendix H: Novelty detection code

18	def detect(self, contamination: int = 0.1) -> list[int]:
	"""Function that detects anomalies in the data using LocalOutlierFactor
	Args:
	contamination (int): The percentage of the dataset that is considered an outlier. Defaults to 0.1.
	Returns:
	list[int]: A list of the ids of the novelties
	<pre>clf = LocalOutlierFactor(n_neighbors=20, novelty=False, contamination=contamination, n_jobs=int(cpu_count()*3/4))</pre>
	<pre>prediction = clf.fit_predict(self.datapd.iloc[:, 3:])</pre>
	count = 0
	for value in prediction:
	if value == -1:
	count += 1
	<pre>ids = np.where(prediction == -1)[0]</pre>
	<pre>time_video = []</pre>
	for id in ids:
	with open(self.data_file) as f:
	f.readline()
	for _ in range(id):
	f.readline()
	<pre>splitted = f.readline().strip().split(',')</pre>
	<pre>i = int(splitted[0])</pre>
	<pre>time = float(splitted[2])</pre>
	with open(self.processed_data_files) as f:
	for line in f:
	<pre>splitted = line.strip().split(',')</pre>
	<pre>if int(splitted[1]) <= i <= int(splitted[2]):</pre>
	video = splitted[3]
	<pre>time_video.append([time, video])</pre>
	break
	return time_video

Figure H.1: We detect the novelties with this function.

Figure H.2: Code that will display the novelties by means of HTML.

Appendix I: PCA code

507	<pre>def determine_pca(self):</pre>
508	"""Calculates and saves the pca of the data in self.pca
509	nnn i i i i i i i i i i i i i i i i i i
510	pca = PCA(n_components=2, svd_solver='auto')
511	self nca = nn array/nca fit transform(self datand iloc[: 3:1))
512	self nca = nn annend(nn array([[i for i in range(len(self datand))]]) reshane(-1, 1) self nca _ axis=1)
212	setting and setting and the setting of the setting of the setting and the
Figure I.1:	Creating the PCA of the dataset.
513	
514	def print_prediction_point(self, current_id: int):
515	"""Creates a file with a plot of the data and the current prediction point
516	
517	Args:
518	current_id (int): ID of the current prediction point
519	
520	plt.clf()
521	<pre>plt.scatter(self.pca[:, 1], self.pca[:, 2], c='grey')</pre>
522	plt.scatter(seif.pca[current_id, 1], seif.pca[current_id, 2], c='red', marker='x', label='current', s=150)
523	for label in self.labels:
524	# Pandas made me do 11. Fuck pandas
525	<pre># Ist = list(self.datapd.loc[self.datapd[label'] == label].lloc[:, 0])</pre>
526	<pre># print(np.where(self.preds[t, 1] == label)) </pre>
527	Ist = self.preds[np.wnere(self.preds[:, 1] == Iabel)[0], :]
528	IST = IST[;, 0].TOIIST()
529	# princ(isc)
550	emploa = []
227	= 115 set(int(of(1)) + im(o(o(1))) + int(o(1)) + in(o(1)) + int(o(1)) + int(1)) + int(1) + int(1) + int(1) + int(1) + int(1) + int(1)) + int(1) + int(1)) + int(1) +
522	* principal ([0]), type(.torist()), int([0]) in ist)
534	npint(a)
535	temp nca annend(e[1:1 tolist())
536	# print(temp pca. '\n')
537	
538	x = []
539	$\mathbf{v} = \begin{bmatrix} 1 \end{bmatrix}$
540	for i in range(len(temp pca)):
541	x.append(temp pca[i][0])
542	y.append(temp pca[i][1])
543	<pre>plt.scatter(x, y, label=label)</pre>
544	plt.legend()
545	<pre># plt.savefig(f'Plots/plot_to_label.png')</pre>
546	<pre>plt.savefig(f'Plots/plot_to_label_{self.html_id}.png')</pre>
547	# self.html_id += 1
548	

Figure I.2: Plotting the PCA, color code the annotated datapoints and mark the current datapoint that needs to be annotated.

Appendix J: Consent forms - User tests

Statement of Consent

Study in-context

This study is conducted as part of the minor course Engineering with AI at TU Delft.

Dear Participant

We would like to invite you to participate in this study conducted by Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and Ian Tiemann.

What is this study about?

The study aims to evaluate the user experience of a machine learning product

How is the study structured?

We will hand you a document with instructions regarding the use of our application in a Jupyter Notebook. We will ask you to do this the best you can and we will take notes about the usage. During and after we will ask you to answer a small survey.

Your rights and early termination or cancellation of the study

Your participation is voluntary, if there are questions you do not wish to answer you can indicate this. You can also choose to stop the meeting at any time. Stopping the study has absolutely no consequences for you. If you wish to cancel participation please contact Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot or Ian Tiemann.

Privacy and dissemination of study results

During the study, TU Delft researchers will collect information (in the form of written notes and Photographs) regarding the usage of the Machine Learning for Designers application. The information will be available only to the research team and employees of the Department of Electrical Engineering, Mathematics & Computer Science at TU Delft. The data will be recorded anonymously. The research results could be disseminated in a project report or scientific article. These results are anonymous data only, so you will not be recognizable in this.

If you decide to participate in this study, we would like to ask you to sign a consent form. You can sign it at the beginning of the meeting.

Thank you for your participation.

Declaration of the person responsible for the study

I certify that I have explained the content of the information of the study and the consent statement to the participants.

I have answered all questions related to this study. I have clearly been told that participation is voluntary and that participation can be terminated at any time without any consequences.

I promise to respect what is written in the information about the study and in the consent statement.

Person(s) responsible for the study

Volker Surname

Gijs First Name 24/-1 -/ 2023 Date (DD/MM/YYYY)

Signature

Declaration of the person responsible for the study

I certify that I have explained the content of the information of the study and the consent statement to the participants.

I have answered all questions related to this study. I have clearly been told that participation is voluntary and that participation can be terminated at any time without any consequences.

I promise to respect what is written in the information about the study and in the consent statement.

Person(s) responsible for the study

Roukema Surname Alan First Name 25 / 1 / 2023 Date (DD/MM/YYYY)

<u>Alan Roukema</u> Signature

Study on the usage of the Machine Learning for Designers application Declaration of the person responsible for the study

I certify that I have explained the content of the information of the study and the consent

I have answered all questions related to this study. I have clearly been told that participation is voluntary and that participation can be terminated at any time without any consequences.

I promise to respect what is written in the information about the study and in the consent

Person(s) responsible for the study

Tiemann Surname

Ion First Name

<u>241 1 2023</u> Date (DD/MM/YYYY)

Signature

Declaration of the person responsible for the study

I certify that I have explained the content of the information of the study and the consent statement to the participants.

I have answered all questions related to this study. I have clearly been told that participation is voluntary and that participation can be terminated at any time without any consequences.

I promise to respect what is written in the information about the study and in the consent statement.

Person(s) responsible for the study

Vlot Surname

Sopure First Name

<u>24 | 1 | 2023</u> Date (DD/MM/YYYY)

TUDelft

Signature

I am voluntarily participating in the study conducted by Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and Ian Tiemann.

I understand that the research is conducted to find out the meaning and/or value(s) of the product.

I acknowledge that in the research in which I am participating, the following records will be made: written notes and photographs

I give permission to take written notes and photographs, and to use these recordings anonymously / not anonymously* in presentations and reports. (*cross out what does NOT apply)

I give permission for members of the project team and employees of the Department of Electrical Engineering, Mathematics & Computer Science at TU Delft to have access to the written notes and photographs.

I give permission to keep data for a maximum of 1 year after.

I acknowledge that no financial compensation is given for participating in the study.

I acknowledge that Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and/or Ian Tiemann explained to me the purpose of the study, answered my questions and gave me the time I needed to agree to participate. At any time I can ask questions regarding the study.

With my signature, I confirm that I have read the information about the study and that I understand the nature of my participation. I understand that I can refuse participation and that I can terminate my participation at any time without any consequences for me.

A copy of this consent form will be given to me.

De Reus

Lois First Name 24/-1 -/ 2023 Date (DD/MM/YYYY)

Signature

I am voluntarily participating in the study conducted by Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and Ian Tiemann.

I understand that the research is conducted to find out the meaning and/or value(s) of the product.

I acknowledge that in the research in which I am participating, the following records will be made: written notes and photographs

I give permission to take written notes and photographs, and to use these recordings anonymously / not anonymously* in presentations and reports. (*cross out what does NOT apply)

I give permission for members of the project team and employees of the Department of Electrical Engineering, Mathematics & Computer Science at TU Delft to have access to the written notes and photographs.

I give permission to keep data for a maximum of 1 year after.

I acknowledge that no financial compensation is given for participating in the study.

I acknowledge that Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and/or Ian Tiemann explained to me the purpose of the study, answered my questions and gave me the time I needed to agree to participate. At any time I can ask questions regarding the study.

With my signature, I confirm that I have read the information about the study and that I understand the nature of my participation. I understand that I can refuse participation and that I can terminate my participation at any time without any consequences for me.

A copy of this consent form will be given to me.

de Werd Surname Guillaume First Name

Guillaume

Signature

I am voluntarily participating in the study conducted by Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and Ian Tiemann.

I understand that the research is conducted to find out the meaning and/or value(s) of the product.

I acknowledge that in the research in which I am participating, the following records will be made: written notes and photographs

I give permission to take written notes and photographs, and to use these recordings anonymously / not anonymously* in presentations and reports. (*cross out what does NOT apply)

I give permission for members of the project team and employees of the Department of Electrical Engineering, Mathematics & Computer Science at TU Delft to have access to the written notes and photographs.

I give permission to keep data for a maximum of 1 year after.

I acknowledge that no financial compensation is given for participating in the study.

I acknowledge that Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and/or Ian Tiemann explained to me the purpose of the study, answered my questions and gave me the time I needed to agree to participate. At any time I can ask questions regarding the study.

With my signature, I confirm that I have read the information about the study and that I understand the nature of my participation. I understand that I can refuse participation and that I can terminate my participation at any time without any consequences for me.

A copy of this consent form will be given to me.

Versluis Surname Mark First Name _25/_1/_2023 Date (DD/MM/YYYY)

Signature

I am voluntarily participating in the study conducted by Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and Ian Tiemann.

I understand that the research is conducted to find out the meaning and/or value(s) of the product.

I acknowledge that in the research in which I am participating, the following records will be made: written notes and photographs

I give permission to take written notes and photographs, and to use these recordings anonymously / not anonymously* in presentations and reports. (*cross out what does NOT apply)

I give permission for members of the project team and employees of the Department of Electrical Engineering, Mathematics & Computer Science at TU Delft to have access to the written notes and photographs.

I give permission to keep data for a maximum of 1 year after.

I acknowledge that no financial compensation is given for participating in the study.

I acknowledge that Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and/or Ian Tiemann explained to me the purpose of the study, answered my questions and gave me the time I needed to agree to participate. At any time I can ask questions regarding the study.

With my signature, I confirm that I have read the information about the study and that I understand the nature of my participation. I understand that I can refuse participation and that I can terminate my participation at any time without any consequences for me.

A copy of this consent form will be given to me.

van Hofslot Surname Gideon First Name <u>24 /-1 -/2023</u> Date (DD/MM/YYYY)

Gideon

Signature

I am voluntarily participating in the study conducted by Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and Ian Tiemann.

I understand that the research is conducted to find out the meaning and/or value(s) of the product.

I acknowledge that in the research in which I am participating, the following records will be made: written notes and photographs

I give permission to take written notes and photographs, and to use these recordings anonymously / not anonymously* in presentations and reports. (*cross out what does NOT apply)

I give permission for members of the project team and employees of the Department of Electrical Engineering, Mathematics & Computer Science at TU Delft to have access to the written notes and photographs.

I give permission to keep data for a maximum of 1 year after.

I acknowledge that no financial compensation is given for participating in the study.

I acknowledge that Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and/or Ian Tiemann explained to me the purpose of the study, answered my questions and gave me the time I needed to agree to participate. At any time I can ask questions regarding the study.

With my signature, I confirm that I have read the information about the study and that I understand the nature of my participation. I understand that I can refuse participation and that I can terminate my participation at any time without any consequences for me.

A copy of this consent form will be given to me.

van Leiden Surname Charlotte First Name

Cul

Signature

I am voluntarily participating in the study conducted by Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and Ian Tiemann.

I understand that the research is conducted to find out the meaning and/or value(s) of the product.

I acknowledge that in the research in which I am participating, the following records will be made: written notes and photographs

I give permission to take written notes and photographs, and to use these recordings anonymously / not anonymously* in presentations and reports. (*cross out what does NOT apply)

I give permission for members of the project team and employees of the Department of Electrical Engineering, Mathematics & Computer Science at TU Delft to have access to the written notes and photographs.

I give permission to keep data for a maximum of 1 year after.

I acknowledge that no financial compensation is given for participating in the study.

I acknowledge that Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and/or Ian Tiemann explained to me the purpose of the study, answered my questions and gave me the time I needed to agree to participate. At any time I can ask questions regarding the study.

With my signature, I confirm that I have read the information about the study and that I understand the nature of my participation. I understand that I can refuse participation and that I can terminate my participation at any time without any consequences for me.

A copy of this consent form will be given to me.

Timmer Surname Bjarne First Name

<u>15/12_/2000</u> Date (DD/MM/YYYY)

Signature

I am voluntarily participating in the study conducted by Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and Ian Tiemann.

I understand that the research is conducted to find out the meaning and/or value(s) of the

I acknowledge that in the research in which I am participating, the following records will be made: written notes and photographs

I give permission to take written notes and photographs, and to use these recordings anonymously / not anonymously* in presentations and reports. (*cross out what does NOT apply)

I give permission for members of the project team and employees of the Department of Electrical Engineering, Mathematics & Computer Science at TU Delft to have access to the written notes and photographs.

I give permission to keep data for a maximum of 1 year after.

I acknowledge that no financial compensation is given for participating in the study.

I acknowledge that Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and/or Ian Tiemann explained to me the purpose of the study, answered my questions and gave me the time I needed to agree to participate. At any time I can ask questions regarding

With my signature, I confirm that I have read the information about the study and that I understand the nature of my participation. I understand that I can refuse participation and that I can terminate my participation at any time without any consequences for me.

A copy of this consent form will be given to me.

woerds

First Name

Signature

I am voluntarily participating in the study conducted by Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and Ian Tiemann.

I understand that the research is conducted to find out the meaning and/or value(s) of the product.

I acknowledge that in the research in which I am participating, the following records will be made: written notes and photographs

I give permission to take written notes and photographs, and to use these recordings anonymously / not anonymously* in presentations and reports. (*cross out what does NOT apply)

I give permission for members of the project team and employees of the Department of Electrical Engineering, Mathematics & Computer Science at TU Delft to have access to the written notes and photographs.

I give permission to keep data for a maximum of 1 year after.

I acknowledge that no financial compensation is given for participating in the study.

I acknowledge that Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and/or Ian Tiemann explained to me the purpose of the study, answered my questions and gave me the time I needed to agree to participate. At any time I can ask questions regarding the study.

With my signature, I confirm that I have read the information about the study and that I understand the nature of my participation. I understand that I can refuse participation and that I can terminate my participation at any time without any consequences for me.

A copy of this consent form will be given to me.

<u>De Jong</u> Surname

<u>J.</u> First Name 23/1/2023 Date (DD/MM/YYYY)

Signature

I am voluntarily participating in the study conducted by Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and Ian Tiemann.

I understand that the research is conducted to find out the meaning and/or value(s) of the product.

I acknowledge that in the research in which I am participating, the following records will be made: written notes and photographs

I give permission to take written notes and photographs, and to use these recordings anonymously / not anonymously* in presentations and reports. (*cross out what does NOT apply)

I give permission for members of the project team and employees of the Department of Electrical Engineering, Mathematics & Computer Science at TU Delft to have access to the written notes and photographs.

I give permission to keep data for a maximum of 1 year after.

I acknowledge that no financial compensation is given for participating in the study.

I acknowledge that Alan Roukema, Gijs Volkers, Skip Doorn, Timo Zunderman, Sophie Vlot and/or Ian Tiemann explained to me the purpose of the study, answered my questions and gave me the time I needed to agree to participate. At any time I can ask questions regarding the study.

With my signature, I confirm that I have read the information about the study and that I understand the nature of my participation. I understand that I can refuse participation and that I can terminate my participation at any time without any consequences for me.

A copy of this consent form will be given to me.

Van Puffelen Surname

First Name

2610112023 Date (DD/MM/YYYY)

TUDelft

nature

Appendix K: Validation approach

	Approach	Timeframe
M.1	Test preprocessing pipeline using PyTest	After coding the preprocessing steps, and after further changes are made
M.2	Compute and sum the intervals between activities	It is known how long it took to collect data, only a computation needs to be used to validate this
M.3	The model can distinguish activities if the predicted labels for different activities are also different	This will be checked when the code has been finished, and afterwards keep being checked regularly
M.4	We feed our trained model data that we know has an unknown activity for the model	This must be done after model selection, and as a final check
M.5	Pick a relevant performance measure and make sure the model doesn't overfit/underfit	Start looking at performance during model selection, and keep validating it during the tuning and integrating process
M.6	Compute a dummy classifier, then compare. Also, collect or set aside some validating data	After model selection unseen data will be put in and re-trained and tuned if it performs insufficiently
M.7	We create a guide that explains the use of the product	This guide is necessary at the end of the project
S.1	If we have documentation that explains the interface and functions, and we have annotations in the code we can conclude that this requirement is met	Annotations are written while coding; one team member will check if they are present, understandable and correct in the week of handing in the project
S.2	Plots can be examined in either a 2D or a 3D plot; it should be possible to visually identify clusters	Added after exploring novelty detection, which will happen around week 7/8
S.3	Design survey for HCI research and find a representative panel	Start finding test subjects and think about research setting and questions in the first phase, take surveys in final phase
S.4	We would likely have 3 different model architectures, based on their optimal performance in each specific context. An explanation must be present to explain their differences and generalizability	First, repeat the data collection and model selection process 3 times. After having selected and implemented working models for activities from 3 different prototypes, they will be validated in the final phase
C.1	Output should be reasonable when IoT data is put into our models	This will only be done after implementing working models in 3 different contexts. Connection to the IoT cloud has a lower priority than

			previous requirements
C	C.2	If this feature is present, we validate model performance on an appropriate evaluation method	Only if time permits it. It is a complex feature that needs most other requirements to be met
C	C.3	This provides the Designer with additional information about how they could add new labels to increase performance	If time permits it, this can be done after validating that the chosen model meets requirement M.4

Z Planning and logbook

Overview

Week 1 + 2: Exploratory analysis and research topic

Week 3: Start planning basic structure of final product based on gathered data + Ethics R1

Week 4: Start programming

.

Week 5: Continue programming + evaluate results and make plan to improve product + Ethics R2

Week 6: Gather more data + programming improvements

Week 7: Program improvements + final evaluation + Ethics R3

Week 8: Write final report

Week 9: Prepare final presentation + finish final report

Week 10: Final presentations

Weekly progress

A specific list of tasks corresponding to our planning can be found here, along with each team members' contribution, and additional information about modifications to the planning or work outside the scope of our Musts (when applicable).

▼ Week 1

Planned tasks

Prepare presentation 1

Discuss initial requirements

Planning and logbook

1

Set up expectations with client

- Process TA and peer feedback
- Distribute tasks week 2 (project plan and further steps)

Log

Alan: individual MoSCoW draft Gijs: presentation, individual MoSCoW draft Ian: presentation, individual MoSCoW draft, creating structure, code of conduct Skip: individual MoSCoW draft Sophie: individual MoSCoW draft, read + summarize references Timo: presentation, individual MoSCoW draft

▼ Week 2

Planned tasks

- Prepare presentation 2
- Projectplan
- MoSCoW + SMART
- ✓ Validation method
- Exploratory analysis: start gathering data

Log

NB The task distribution for the project plan can be found under Presentation notes 11-18

Alan: project plan, presentation

Gijs: project plan, Miro flowchart, Testing edge- impulse

lan: project plan, presentation prepare, planning

Skip: project plan, presentation, preprocessing

Sophie: project plan, presentation, look into HCI research + created survey

Timo: project plan, preprocessing

Additional

Found out that finding a test panel for S.3 (making designers rate our product) should be in progress early on in the project. At any moment a team member has time to spare, it could be spent on this kind of preparatory work.

▼ Week 3

Planned tasks

Choose appropriate ML techniques

- Make a basic structure for programming
- create a pipeline by hand (not programmed)
- Work out what preprocessing we need
- Write ethics reflection 1

Log

Alan: gathering data, machine learning model selection and research, correct ethical reflection

lan: gathering data, discovery of right model, preprocessing for model

Gijs: plan data collection, gathering data, correct ethical reflection, Edge impulse analysation and feature implementation

Skip: programming preprocessing, gathering data and feature implementation

Sophie: ethical reflection, create logbook, researched & coded active learning pipeline

Timo: programming preprocessing, gathering data and feature implementation

Additional

We realized that preprocessing is important to have completely finished first, which is why we digressed from our planning (choosing ML techniques). Started programming before we planned to for the same reason

▼ Week 4

Planned tasks

- Start coding the basic structure of the program
- Make the basic pipeline of the models
- Create preprocessing pipeline

Log

Alan: discovery of right model, getting accuracies of different models lan: discovery of right model, getting accuracies of different models, PCA Gijs: Widgets for notebook exploration, mapping out the programm flow Skip: programming active learning Sophie: programming active learning, researched sampling techniques Timo: preprocessing, widgets for notebook exploration

Additional

Preprocessing had already been finished by now, and the active learning structure completely worked by the end of this week. Since we're ahead of schedule, we had some time to look at extra requirements and thoroughly perfecting performance

▼ Week 5

Planned tasks

- Vrite ethics reflection 2
- Work on the code
- Evaluate the performance of the code
- Determine points of improvement

Planning and logbook

4

Log

Alan: Making a barchart that shows the accuracy per feature in the dataset based on random forest model, ethical reflection

lan: getting kmeans accruracy, creating new datasets, plotting feature importance, recruiting designers for testing

Gijs: Making program to import files from the GoPro and test the GoPro's functiuonality

Skip: Finishing up active learning and testing on available data.

Sophie: finetune sampling techniques (kmeans), model testing, user guide

Timo: Unavailable, started with novelty detection

Additional

According to planning, gathering more data is a task for next week. But we already started collecting and preparing GoPro data for the interface last week. Evaluating performance on the known dataset was completely finished, and we discussed performance measures that will be shown to the designer. We also had some time for novelty detection and gathering a different context (vacuum cleaner) data this week

▼ Week 6

Planned tasks

🗹 Gather more data

- Work on the points of improvement established in week 5
- Determine steps needed to get to final product

Log

Alan: Making a barchart that shows the accuracy per feature in the dataset based on random forest model

lan: Making presentation material, fixing kmeans accuracy and preparing the different cases, gathering data, checking presentation and requirements

Gijs: Finish the GoPro program, ill and data gathering.

Skip: Improve active learning and dataprocessing to implement gyroscope data

Sophie: Finished survey and intro guide

Timo: Started with integration of the different modules

Additional

Started integrating code, making individual parts work together. Almost finished aside from some small errors. Sophie wasn't present for a few days this week due to the flu.

▼ Week 7

Planned tasks

✓ Validate models (on test/validation data)

Improve and change code where needed

✓ Write ethics reflection 3

Log

Alan: Validation and evaluation of final report, had exams so was not able to contribute a lot

lan: novelty detection, plotting current datapoint, cleanup, code annotation, rapport model selection and preprocessing

Gijs: notebook instructions (preprocessing, active learning), key terms, Import GoPro files into the notebook and fix the bugs in the program. Timeline image for the user of the program.

Skip: add gyroscope data and pca to improve active learning experience.

Sophie: ethics reflection 3, user guide (data collection, appendices, installation guide), evaluation (survey), report (active learning, evaluation, reflection)

Timo: Integration, calculating some statistics for the end user

Additional

Started documenting process in actual report, cleaning up Notion page, and integrating more documents and code. Resolved all errors in code, started working on readability (cleaning up code). Made plan for the coming weeks: survey evaluation next week, novelty detection and full product should be finished by this week. Only focusing on report and guide in weeks 8-9.

▼ Week 8

Planned tasks

- Validate MoSCoW requirements
- Adjust product to satisfy requirements
- Clean up report (and other documents') layout
- User testing

Log

Alan: Working on report: validation & model selection, finetuning accuracy barchart, glossary in user guide

Ian: user testing, website creating, notebook, report

Gijs: Finalize timeline image, importing GoPro data. Fixing bugs with large GoPro files. Notebook fixes.

Skip: Bug fixes and documentation

Sophie: report (testing models, recommendations, validation, data collection), Notebook (instructions, resources), designer consent form, website

Timo: Integration and bug fixes

Additional

Since we created the report pretty late, cleaning up and updating documents actually took minimal effort. All we had to do was decide on a final version of the survey and discuss data collection requirements. The code had some final adjustments, so we had some remaining requirements to validate next week. On Friday, we decided to create a website for the instructions, at the request of the client

▼ Week 9

Planned tasks

Final report

 Maybe set up glossary for terms like prototype or product at the beginning of report.

☐ If time allows: start preparing final presentation

Log

Alan:

lan: rapport, intro, website, user testing, bug fixing

Gijs: Generate notebook for the user test,

Skip: Documentation, bug fixes and improve design robustness.

Sophie: finished website, report: notebook and instructions, added background to website, processed survey results, user testing

Timo: Bug fixes and documentation

Additional

We had already created the glossary while working on the user guide, so this part had already been finished by now. We compared the Notebook and website instructions and made some small adjustments. During the TA meeting we discussed whether some final bugs were resolvable, and finished and cleaned up the documentation. We finished the last stage of user testing and processed survey results.

▼ Week 10

Planned tasks

Prepare final presentation

Log

Planning and logbook

8

Alan week 9: report checking, report introduction, flowchart in Notebook and report, Notebook checking, user testing, other design choices in report Gijs week 9: + Finishing notebook as a result of the user test, minor report fixes. Alan: Presentation lan: Presentation Gijs: Presentation Skip: Presentation Sophie: Presentation Timo: Presentation

Additional

We finished the report and only worked on the presentation during this week.

Planning and logbook

9

Appendix M: JavaScript code

This the JavaScript code used to extract the telemetry data from the GoPro video

Figure M.1: JavaScript code to extract the telemetry data